BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

842 related articles for article (PubMed ID: 17532907)

  • 1. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J; Pros D
    Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J
    Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy storing property of so-called energy-storing prosthetic feet.
    Ehara Y; Beppu M; Nomura S; Kunimi Y; Takahashi S
    Arch Phys Med Rehabil; 1993 Jan; 74(1):68-72. PubMed ID: 8420524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stride kinematics and knee joint kinetics of child amputee gait.
    Hoy MG; Whiting WC; Zernicke RF
    Arch Phys Med Rehabil; 1982 Feb; 63(2):74-82. PubMed ID: 7059274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical function, gait, and dynamic balance of transfemoral amputees using two mechanical passive prosthetic knee devices.
    Lythgo N; Marmaras B; Connor H
    Arch Phys Med Rehabil; 2010 Oct; 91(10):1565-70. PubMed ID: 20875515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait initiation in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Apr; 27(3):423-30. PubMed ID: 17624782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet.
    Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK
    J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations.
    Powers CM; Torburn L; Perry J; Ayyappa E
    Arch Phys Med Rehabil; 1994 Jul; 75(7):825-9. PubMed ID: 8024435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of prosthetic limbs: adapting to the patient.
    Klute GK; Kallfelz CF; Czerniecki JM
    J Rehabil Res Dev; 2001; 38(3):299-307. PubMed ID: 11440261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait.
    Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Finnieston A
    Prosthet Orthot Int; 2013 Oct; 37(5):396-403. PubMed ID: 23364890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.
    Ventura JD; Klute GK; Neptune RR
    Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z; Janura M; Cabell L; Elfmark M
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local dynamic stability of amputees wearing a torsion adapter compared to a rigid adapter during straight-line and turning gait.
    Segal AD; Orendurff MS; Czerniecki JM; Shofer JB; Klute GK
    J Biomech; 2010 Oct; 43(14):2798-803. PubMed ID: 20719315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L; Powers CM; Guiterrez R; Perry J
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetry in external work (SEW): a novel method of quantifying gait differences between prosthetic feet.
    Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Dowell T
    Prosthet Orthot Int; 2009 Jun; 33(2):148-56. PubMed ID: 19367518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.