These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1753293)

  • 1. Intracellular analysis of excitatory-inhibitory synaptic interactions in crayfish stretch receptors.
    Barrio LC; Araque A; Abraira V; Buño W
    J Neurophysiol; 1991 Sep; 66(3):894-904. PubMed ID: 1753293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Participation of voltage-gated conductances on the response succeeding inhibitory synaptic potentials in the crayfish slowly adapting stretch receptor neuron.
    Barrio LC; Araque A; Buño W
    J Neurophysiol; 1994 Sep; 72(3):1140-51. PubMed ID: 7528791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal correlations in sensory-synaptic interactions: example in crayfish stretch receptors.
    Barrio LC; Buño W
    J Neurophysiol; 1990 Jun; 63(6):1520-8. PubMed ID: 2358890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptor neurons.
    Barrio LC; Buño W
    J Neurophysiol; 1990 Jun; 63(6):1508-19. PubMed ID: 2358889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of pacemaker activity by IPSP and brief length perturbations in the crayfish stretch receptor.
    Buño W; Fuentes J; Barrio L
    J Neurophysiol; 1987 Mar; 57(3):819-34. PubMed ID: 3031234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of GABAB-mediated inhibition with voltage-gated currents of pyramidal cells: computational mechanism of a sensory searchlight.
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3197-213. PubMed ID: 9862916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periodically-modulated inhibition of living pacemaker neurons--III. The heterogeneity of the postsynaptic spike trains, and how control parameters affect it.
    Segundo JP; Vibert JF; Stiber M
    Neuroscience; 1998 Nov; 87(1):15-47. PubMed ID: 9722139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodically modulated inhibition and its postsynaptic consequences--I. General features. Influence of modulation frequency.
    Segundo JP; Vibert JF; Stiber M; Hanneton S
    Neuroscience; 1995 Oct; 68(3):657-92. PubMed ID: 8577366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitatory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):986-98. PubMed ID: 1684383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):999-1009. PubMed ID: 1684384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro brain slice studies of the rat's dorsal nucleus of the lateral lemniscus. I. Membrane and synaptic response properties.
    Wu SH; Kelly JB
    J Neurophysiol; 1995 Feb; 73(2):780-93. PubMed ID: 7760134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductance changes underlying a late synaptic hyperpolarization in hippocampal CA3 neurons.
    Hablitz JJ; Thalmann RH
    J Neurophysiol; 1987 Jul; 58(1):160-79. PubMed ID: 2441001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):341-52. PubMed ID: 9120575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term plasticity at inhibitory synapses in rat striatum and its effects on striatal output.
    Fitzpatrick JS; Akopian G; Walsh JP
    J Neurophysiol; 2001 May; 85(5):2088-99. PubMed ID: 11353025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs.
    Bevan MD; Magill PJ; Hallworth NE; Bolam JP; Wilson CJ
    J Neurophysiol; 2002 Mar; 87(3):1348-62. PubMed ID: 11877509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of sensory afferent synaptic transmission in aortic baroreceptor regions on nucleus tractus solitarius.
    Andresen MC; Yang M
    J Neurophysiol; 1995 Oct; 74(4):1518-28. PubMed ID: 8989390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transients in the inhibitory driving of neurons and their postsynaptic consequences.
    Segundo JP; Stiber M; Altshuler E; Vibert JF
    Neuroscience; 1994 Sep; 62(2):459-80. PubMed ID: 7830892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus).
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3173-96. PubMed ID: 9862915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of depolarizing inhibition at the crayfish giant motor synapse. I. Electrophysiology.
    Edwards DH
    J Neurophysiol; 1990 Aug; 64(2):532-40. PubMed ID: 2213130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.