BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17533114)

  • 1. Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.
    Mukherjee IN; Song YC; Sambanis A
    Cryobiology; 2007 Aug; 55(1):10-8. PubMed ID: 17533114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions.
    Lawson A; Ahmad H; Sambanis A
    Cryobiology; 2011 Apr; 62(2):115-22. PubMed ID: 21262212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.
    Lawson A; Mukherjee IN; Sambanis A
    Cryobiology; 2012 Feb; 64(1):1-11. PubMed ID: 22142903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified-warmed ovarian tissue survival.
    Youm HW; Lee JR; Lee J; Jee BC; Suh CS; Kim SH
    Hum Reprod; 2014 Apr; 29(4):720-30. PubMed ID: 24365801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryopreservation of rabbit semen: comparing the effects of different cryoprotectants, cryoprotectant-free vitrification, and the use of albumin plus osmoprotectants on sperm survival and fertility after standard vapor freezing and vitrification.
    Rosato MP; Iaffaldano N
    Theriogenology; 2013 Feb; 79(3):508-16. PubMed ID: 23218394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies.
    Mukherjee IN; Li Y; Song YC; Long RC; Sambanis A
    Osteoarthritis Cartilage; 2008 Nov; 16(11):1379-86. PubMed ID: 18539055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
    Lai D; Ding J; Smith GW; Smith GD; Takayama S
    Hum Reprod; 2015 Jan; 30(1):37-45. PubMed ID: 25355589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryoprotective agent toxicity interactions in human articular chondrocytes.
    Almansoori KA; Prasad V; Forbes JF; Law GK; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2012 Jun; 64(3):185-91. PubMed ID: 22274740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative investigations on the effects of exposure durations to the combined cryoprotective agents on mouse oocyte vitrification procedures.
    Wang L; Liu J; Zhou GB; Hou YP; Li JJ; Zhu SE
    Biol Reprod; 2011 Nov; 85(5):884-94. PubMed ID: 21697515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells.
    Shu Z; Hughes SM; Fang C; Huang J; Fu B; Zhao G; Fialkow M; Lentz G; Hladik F; Gao D
    Cryobiology; 2016 Apr; 72(2):93-9. PubMed ID: 26976225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vitrification media: toxicity, permeability, and dielectric properties.
    Wusteman MC; Pegg DE; Robinson MP; Wang LH; Fitch P
    Cryobiology; 2002 Feb; 44(1):24-37. PubMed ID: 12061845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water.
    Devireddy RV
    Mol Reprod Dev; 2005 Mar; 70(3):333-43. PubMed ID: 15625698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.
    Davidson AF; Glasscock C; McClanahan DR; Benson JD; Higgins AZ
    PLoS One; 2015; 10(11):e0142828. PubMed ID: 26605546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions.
    Lotz J; IƧli S; Liu D; Caliskan S; Sieme H; Wolkers WF; Oldenhof H
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129797. PubMed ID: 33212229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmometric and permeability characteristics of human placental/umbilical cord blood CD34+ cells and their application to cryopreservation.
    Woods EJ; Liu J; Derrow CW; Smith FO; Williams DA; Critser JK
    J Hematother Stem Cell Res; 2000 Apr; 9(2):161-73. PubMed ID: 10813529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas.
    Fedorow C; McGann LE; Korbutt GS; Rayat GR; Rajotte RV; Lakey JR
    Cell Transplant; 2001; 10(7):651-9. PubMed ID: 11714201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple cryoprotectant toxicity model for vitrification solution optimization.
    Warner RM; Brown KS; Benson JD; Eroglu A; Higgins AZ
    Cryobiology; 2022 Oct; 108():1-9. PubMed ID: 36113568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of developmental stage on bovine oocyte plasma membrane water and cryoprotectant permeability characteristics.
    Agca Y; Liu J; Peter AT; Critser ES; Critser JK
    Mol Reprod Dev; 1998 Apr; 49(4):408-15. PubMed ID: 9508092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function.
    Benson JD; Kearsley AJ; Higgins AZ
    Cryobiology; 2012 Jun; 64(3):144-51. PubMed ID: 22248796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of oocyte membrane permeability coefficients and their application to cryopreservation in a rabbit model.
    Liu J; Mullen S; Meng Q; Critser J; Dinnyes A
    Cryobiology; 2009 Oct; 59(2):127-34. PubMed ID: 19527701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.