BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 17533114)

  • 41. Effects of different cryoprotectants and cryopreservation protocols on the development of 2-4 cell mouse embryos.
    Liu WX; Lu H; Luo MJ; Xu LZ
    Cryo Letters; 2011; 32(3):240-7. PubMed ID: 21766153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Statistical prediction of the vitrifiability and glass stability of multi-component cryoprotective agent solutions.
    Weiss AD; Forbes JF; Scheuerman A; Law GK; Elliott JA; McGann LE; Jomha NM
    Cryobiology; 2010 Aug; 61(1):123-7. PubMed ID: 20558152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Use of natural deep eutectic systems as new cryoprotectant agents in the vitrification of mammalian cells.
    Jesus AR; Duarte ARC; Paiva A
    Sci Rep; 2022 May; 12(1):8095. PubMed ID: 35577888
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Viability and function of the cryopreserved whole rat ovary: comparison between slow-freezing and vitrification.
    Milenkovic M; Diaz-Garcia C; Wallin A; Brännström M
    Fertil Steril; 2012 May; 97(5):1176-82. PubMed ID: 22341373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Study on cryopreservation of tissue engineered tendon by vitrification].
    Liu C; Qin T; Wang Z; Chen X; Yang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Aug; 26(4):847-51. PubMed ID: 19813624
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Temperature Dependence of Membrane Permeability Parameters for Five Cell Types Using Nonideal Thermodynamic Assumptions to Mathematically Model Cryopreservation Protocols.
    Yadegari F; Gabler Pizarro LA; Marquez-Curtis LA; Elliott JAW
    J Phys Chem B; 2024 Feb; 128(5):1139-1160. PubMed ID: 38291962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Principles of cryopreservation.
    Pegg DE
    Methods Mol Biol; 2015; 1257():3-19. PubMed ID: 25428001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of two combinations of cryoprotectants on the in vitro developmental capacity of vitrified immature porcine oocytes.
    Nohalez A; Martinez CA; Gil MA; Almiñana C; Roca J; Martinez EA; Cuello C
    Theriogenology; 2015 Sep; 84(4):545-52. PubMed ID: 25998270
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Japanese flounder (Paralichthys olivaceus) embryos are difficult to cryopreserve by vitrification.
    Edashige K; Valdez DM; Hara T; Saida N; Seki S; Kasai M
    Cryobiology; 2006 Aug; 53(1):96-106. PubMed ID: 16750523
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cryoprotectant permeability parameters for cells used in a bioengineered human corneal equivalent and applications for cryopreservation.
    Ebertz SL; McGann LE
    Cryobiology; 2004 Oct; 49(2):169-80. PubMed ID: 15351688
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development of a droplet-vitrification protocol for cryopreservation of Rubia akane (Nakai) hairy roots using a systematic approach.
    Kim HH; Popova EV; Shin DJ; Bae CH; Baek HJ; Park SU; Engelmann F
    Cryo Letters; 2012; 33(6):506-17. PubMed ID: 23250410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant.
    Isachenko V; Montag M; Isachenko E; Dessole S; Nawroth F; van der Ven H
    Fertil Steril; 2006 Mar; 85(3):741-7. PubMed ID: 16500347
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Compatible solutes improve cryopreservation of human endothelial cells.
    Sun H; Glasmacher B; Hofmann N
    Cryo Letters; 2012; 33(6):485-93. PubMed ID: 23250408
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracellular pH changes in isolated bovine articular chondrocytes during the loading and removal of cryoprotective agents.
    Xu X; Cui ZF; Wilkins RJ; Urban JP
    Cryobiology; 2003 Apr; 46(2):161-73. PubMed ID: 12686206
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rationally optimized cryopreservation of multiple mouse embryonic stem cell lines: II--Mathematical prediction and experimental validation of optimal cryopreservation protocols.
    Kashuba CM; Benson JD; Critser JK
    Cryobiology; 2014 Apr; 68(2):176-84. PubMed ID: 24560712
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dose-injury relationships for cryoprotective agent injury to human chondrocytes.
    Fahmy MD; Almansoori KA; Laouar L; Prasad V; McGann LE; Elliott JA; Jomha NM
    Cryobiology; 2014 Feb; 68(1):50-6. PubMed ID: 24269869
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs.
    Adams SL; Kleinhans FW; Mladenov PV; Hessian PA
    Cryobiology; 2003 Aug; 47(1):1-13. PubMed ID: 12963407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Polyampholytes as cryoprotective agents for mammalian cell cryopreservation.
    Matsumura K; Bae JY; Hyon SH
    Cell Transplant; 2010; 19(6):691-9. PubMed ID: 20525437
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preliminary studies on the vitrification of red sea bream (Pagrus major) embryos.
    Ding FH; Xiao ZZ; Li J
    Theriogenology; 2007 Sep; 68(5):702-8. PubMed ID: 17606292
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cryopreservation of umbilical cord blood-derived mesenchymal stem cells without dimethyl sulfoxide.
    Wang HY; Lun ZR; Lu SS
    Cryo Letters; 2011; 32(1):81-8. PubMed ID: 21468457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.