These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 17533135)
21. In-situ enrichment of phosphopeptides on MALDI plates modified by ambient ion landing. Krásný L; Pompach P; Strohalm M; Obsilova V; Strnadová M; Novák P; Volný M J Mass Spectrom; 2012 Oct; 47(10):1294-302. PubMed ID: 23019160 [TBL] [Abstract][Full Text] [Related]
22. Enhanced MALDI-TOF MS analysis of phosphopeptides using an optimized DHAP/DAHC matrix. Hou J; Xie Z; Xue P; Cui Z; Chen X; Li J; Cai T; Wu P; Yang F J Biomed Biotechnol; 2010; 2010():759690. PubMed ID: 20339515 [TBL] [Abstract][Full Text] [Related]
23. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications. Çelikbıçak Ö; Atakay M; Güler Ü; Salih B Analyst; 2013 Aug; 138(15):4403-10. PubMed ID: 23730683 [TBL] [Abstract][Full Text] [Related]
24. Impulse-driven heated-droplet deposition interface for capillary and microbore LC-MALDI MS and MS/MS. Young JB; Li L Anal Chem; 2007 Aug; 79(15):5927-34. PubMed ID: 17605467 [TBL] [Abstract][Full Text] [Related]
25. GO-META-TiO Zhao S; Wang S; Yan Y; Wang L; Guo G; Wang X Talanta; 2019 Jan; 192():360-367. PubMed ID: 30348403 [TBL] [Abstract][Full Text] [Related]
26. Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. Zhou H; Xu S; Ye M; Feng S; Pan C; Jiang X; Li X; Han G; Fu Y; Zou H J Proteome Res; 2006 Sep; 5(9):2431-7. PubMed ID: 16944956 [TBL] [Abstract][Full Text] [Related]
27. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Zhang Y; Yu X; Wang X; Shan W; Yang P; Tang Y Chem Commun (Camb); 2004 Dec; (24):2882-3. PubMed ID: 15599454 [TBL] [Abstract][Full Text] [Related]
28. [Preparation of magnetic carbon nitride composite toward phosphopeptide enrichment]. Jiang LY; Zhang WL; Zhao L; Hu LH Se Pu; 2024 Jun; 42(6):564-571. PubMed ID: 38845517 [TBL] [Abstract][Full Text] [Related]
29. Coupling of TiO(2)-mediated enrichment and on-bead guanidinoethanethiol labeling for effective phosphopeptide analysis by matrix-assisted laser desorption/ionization mass spectrometry. Ahn YH; Ji ES; Lee JY; Cho K; Yoo JS Rapid Commun Mass Spectrom; 2007; 21(24):3987-94. PubMed ID: 18000841 [TBL] [Abstract][Full Text] [Related]
30. Facile synthesis of alumina hollow spheres for on-plate-selective enrichment of phosphopeptides. Lu J; Liu S; Deng C Chem Commun (Camb); 2011 May; 47(18):5334-6. PubMed ID: 21451814 [TBL] [Abstract][Full Text] [Related]
31. Hydroxyapatite as a concentrating probe for phosphoproteomic analyses. Pinto G; Caira S; Cuollo M; Lilla S; Fierro O; Addeo F J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Oct; 878(28):2669-78. PubMed ID: 20810326 [TBL] [Abstract][Full Text] [Related]
32. Enrichment of phosphopeptides using bare magnetic particles. Lee A; Yang HJ; Lim ES; Kim J; Kim Y Rapid Commun Mass Spectrom; 2008 Aug; 22(16):2561-4. PubMed ID: 18655002 [TBL] [Abstract][Full Text] [Related]
33. Selective enrichment and fractionation of phosphopeptides from peptide mixtures by isoelectric focusing after methyl esterification. Xu CF; Wang H; Li D; Kong XP; Neubert TA Anal Chem; 2007 Mar; 79(5):2007-14. PubMed ID: 17249638 [TBL] [Abstract][Full Text] [Related]
34. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Li Y; Leng T; Lin H; Deng C; Xu X; Yao N; Yang P; Zhang X J Proteome Res; 2007 Nov; 6(11):4498-510. PubMed ID: 17900103 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional ZrO(2) nanoparticles and ZrO(2)-SiO (2) nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Kailasa SK; Wu HF Anal Bioanal Chem; 2010 Feb; 396(3):1115-25. PubMed ID: 20091153 [TBL] [Abstract][Full Text] [Related]
36. Facile liquid-phase deposition synthesis of titania-coated magnetic sporopollenin for the selective capture of phosphopeptides. Hussain D; Najam-Ul-Haq M; Majeed S; Musharraf SG; Lu Q; He X; Feng YQ Anal Bioanal Chem; 2019 Jun; 411(15):3373-3382. PubMed ID: 31016328 [TBL] [Abstract][Full Text] [Related]
37. Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. Han L; Shan Z; Chen D; Yu X; Yang P; Tu B; Zhao D J Colloid Interface Sci; 2008 Feb; 318(2):315-21. PubMed ID: 18001758 [TBL] [Abstract][Full Text] [Related]
38. Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Kjellström S; Jensen ON Anal Chem; 2004 Sep; 76(17):5109-17. PubMed ID: 15373450 [TBL] [Abstract][Full Text] [Related]
39. Detection of phosphopeptides using Fe(III)-nitrilotriacetate complexes immobilized on a MALDI plate. Dunn JD; Watson JT; Bruening ML Anal Chem; 2006 Mar; 78(5):1574-80. PubMed ID: 16503610 [TBL] [Abstract][Full Text] [Related]
40. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Chen CT; Wang LY; Ho YP Anal Bioanal Chem; 2011 Mar; 399(8):2795-806. PubMed ID: 21249345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]