These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17533767)

  • 1. Task-dependent selection of grasp kinematics and stiffness in human object manipulation.
    Friedman J; Flash T
    Cortex; 2007 Apr; 43(3):444-60. PubMed ID: 17533767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual and tactile information about object-curvature control fingertip forces and grasp kinematics in human dexterous manipulation.
    Jenmalm P; Dahlstedt S; Johansson RS
    J Neurophysiol; 2000 Dec; 84(6):2984-97. PubMed ID: 11110826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of cognitive, kinematic, and dynamic factors to anticipatory grasp selection.
    Herbort O; Butz MV; Kunde W
    Exp Brain Res; 2014 Jun; 232(6):1677-88. PubMed ID: 24534913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object.
    Mason CR; Theverapperuma LS; Hendrix CM; Ebner TJ
    J Neurophysiol; 2004 Jun; 91(6):2826-37. PubMed ID: 14762155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of grasp stability in humans under different frictional conditions during multidigit manipulation.
    Burstedt MK; Flanagan JR; Johansson RS
    J Neurophysiol; 1999 Nov; 82(5):2393-405. PubMed ID: 10561413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation into manual asymmetries in grasp behavior and kinematics during an object manipulation task.
    Seegelke C; Hughes CM; Schack T
    Exp Brain Res; 2011 Nov; 215(1):65-75. PubMed ID: 21938544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverting the planning gradient: adjustment of grasps to late segments of multi-step object manipulations.
    Mathew H; Kunde W; Herbort O
    Exp Brain Res; 2017 May; 235(5):1397-1409. PubMed ID: 28233050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of reducing intermediate target constraints on grasp posture planning during a three-segment object manipulation task.
    Seegelke C; Hughes CM; Knoblauch A; Schack T
    Exp Brain Res; 2015 Feb; 233(2):529-38. PubMed ID: 25370347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cognition, action, and object manipulation.
    Rosenbaum DA; Chapman KM; Weigelt M; Weiss DJ; van der Wel R
    Psychol Bull; 2012 Sep; 138(5):924-46. PubMed ID: 22448912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planning grasps for object manipulation: integrating internal preferences and external constraints.
    Herbort O; Butz MV
    Cogn Process; 2015 Sep; 16 Suppl 1():249-53. PubMed ID: 26224266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictions specify reactive control of individual digits in manipulation.
    Ohki Y; Edin BB; Johansson RS
    J Neurosci; 2002 Jan; 22(2):600-10. PubMed ID: 11784808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. End-state comfort trumps handedness in object manipulation.
    Coelho CJ; Studenka BE; Rosenbaum DA
    J Exp Psychol Hum Percept Perform; 2014 Apr; 40(2):718-30. PubMed ID: 24294873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual differences in motor planning during a multi-segment object manipulation task.
    Seegelke C; Hughes CM; Schütz C; Schack T
    Exp Brain Res; 2012 Oct; 222(1-2):125-36. PubMed ID: 22885998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
    Ehrsson HH; Fagergren A; Johansson RS; Forssberg H
    J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finger movements during reach-to-grasp in the monkey: amplitude scaling of a temporal synergy.
    Theverapperuma LS; Hendrix CM; Mason CR; Ebner TJ
    Exp Brain Res; 2006 Mar; 169(4):433-48. PubMed ID: 16292639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of grasp compatibility in go/no-go and two-choice tasks.
    Pecher D; Roest S; Zeelenberg R
    Mem Cognit; 2019 Aug; 47(6):1076-1087. PubMed ID: 30830555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping.
    Monaco S; Cavina-Pratesi C; Sedda A; Fattori P; Galletti C; Culham JC
    J Neurophysiol; 2011 Nov; 106(5):2248-63. PubMed ID: 21795615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aging effects on object transport during gait.
    Diermayr G; McIsaac TL; Kaminski TR; Gordon AM
    Gait Posture; 2011 Jul; 34(3):334-9. PubMed ID: 21715168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing planning of a familiar grasp to an object: what it is to pick a cup.
    Rounis E; Zhang Z; Pizzamiglio G; Duta M; Humphreys G
    Exp Brain Res; 2017 Apr; 235(4):1281-1296. PubMed ID: 28204861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.