BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17533844)

  • 1. Quantifying PM2.5 source contributions for the San Joaquin Valley with multivariate receptor models.
    Chen LW; Watson JG; Chow JC; Magliano KL
    Environ Sci Technol; 2007 Apr; 41(8):2818-26. PubMed ID: 17533844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of forest fire impacts on carbonaceous aerosols using complementary molecular marker receptor models at two urban locations in California's San Joaquin Valley.
    Bae MS; Skiles MJ; Lai AM; Olson MR; de Foy B; Schauer JJ
    Environ Pollut; 2019 Mar; 246():274-283. PubMed ID: 30557801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Receptor model source attributions for Utah's Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.
    Kelly KE; Kotchenruther R; Kuprov R; Silcox GD
    J Air Waste Manag Assoc; 2013 May; 63(5):575-90. PubMed ID: 23786149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Source identification and apportionment of PM2.5 and PM2.5-10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models.
    Ogundele LT; Owoade OK; Olise FS; Hopke PK
    Environ Monit Assess; 2016 Oct; 188(10):574. PubMed ID: 27645143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PM
    Matawle JL; Pervez S; Deb MK; Shrivastava A; Tiwari S
    Environ Geochem Health; 2018 Feb; 40(1):145-161. PubMed ID: 27807676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PM
    Chen LW; Watson JG; Chow JC; DuBois DW; Herschberger L
    J Air Waste Manag Assoc; 2011 Nov; 61(11):1204-17. PubMed ID: 22168104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data.
    Pancras JP; Landis MS; Norris GA; Vedantham R; Dvonch JT
    Sci Total Environ; 2013 Mar; 448():2-13. PubMed ID: 23302684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study.
    Watson JG; Chow JC; Lowenthal DH; Antony Chen LW; Shaw S; Edgerton ES; Blanchard CL
    J Air Waste Manag Assoc; 2015 Sep; 65(9):1104-18. PubMed ID: 26102211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resolving the interactions between population density and air pollution emissions controls in the San Joaquin Valley, USA.
    Hixson M; Mahmud A; Hu J; Kleeman MJ
    J Air Waste Manag Assoc; 2012 May; 62(5):566-75. PubMed ID: 22696806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of PM2.5 source apportionment using positive matrix factorization and molecular marker-based chemical mass balance.
    Ke L; Liu W; Wang Y; Russell AG; Edgerton ES; Zheng M
    Sci Total Environ; 2008 May; 394(2-3):290-302. PubMed ID: 18313727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX.
    Song Y; Xie S; Zhang Y; Zeng L; Salmon LG; Zheng M
    Sci Total Environ; 2006 Dec; 372(1):278-86. PubMed ID: 17097135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent changes in winter PM
    Kotchenruther RA
    Atmos Environ (1994); 2020 Sep; 237():117724. PubMed ID: 32982564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source Apportionment of Total Suspended Particles (TSP) by Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) Modeling in Ahvaz, Iran.
    Ashrafi K; Fallah R; Hadei M; Yarahmadi M; Shahsavani A
    Arch Environ Contam Toxicol; 2018 Aug; 75(2):278-294. PubMed ID: 29313074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative potential of ambient PM
    Liu W; Xu Y; Liu W; Liu Q; Yu S; Liu Y; Wang X; Tao S
    Environ Pollut; 2018 May; 236():514-528. PubMed ID: 29428706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of regional-scale receptor modeling.
    Lowenthal DH; Watson JG; Koracin D; Chen LW; Dubois D; Vellore R; Kumar N; Knipping EM; Wheeler N; Craig K; Reid S
    J Air Waste Manag Assoc; 2010 Jan; 60(1):26-42. PubMed ID: 20102033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six sources mainly contributing to the haze episodes and health risk assessment of PM
    Xu X; Zhang H; Chen J; Li Q; Wang X; Wang W; Zhang Q; Xue L; Ding A; Mellouki A
    Ecotoxicol Environ Saf; 2018 Dec; 166():146-156. PubMed ID: 30265878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source apportionment of PM
    Ryou HG; Heo J; Kim SY
    Environ Pollut; 2018 Sep; 240():963-972. PubMed ID: 29910064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers.
    Zheng M; Cass GR; Schauer JJ; Edgerton ES
    Environ Sci Technol; 2002 Jun; 36(11):2361-71. PubMed ID: 12075791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, Washington.
    Maykut NN; Lewtas J; Kim E; Larson TV
    Environ Sci Technol; 2003 Nov; 37(22):5135-42. PubMed ID: 14655699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.