These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 17533873)

  • 1. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis.
    Suzuki H; Toyooka T; Ibuki Y
    Environ Sci Technol; 2007 Apr; 41(8):3018-24. PubMed ID: 17533873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells.
    Guichard Y; Schmit J; Darne C; Gaté L; Goutet M; Rousset D; Rastoix O; Wrobel R; Witschger O; Martin A; Fierro V; Binet S
    Ann Occup Hyg; 2012 Jul; 56(5):631-44. PubMed ID: 22449629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence.
    Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK
    Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Massaro EJ; Sanders KM; Degn LL; Boyes WK
    Cytometry A; 2010 Jul; 77(7):677-85. PubMed ID: 20564539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light.
    Zhao X; Ibuki Y
    Environ Sci Technol; 2015 Apr; 49(8):5003-12. PubMed ID: 25815977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity.
    Toduka Y; Toyooka T; Ibuki Y
    Environ Sci Technol; 2012 Jul; 46(14):7629-36. PubMed ID: 22703531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of TiO2 nanoparticles in cells by flow cytometry.
    Zucker RM; Daniel KM
    Methods Mol Biol; 2012; 906():497-509. PubMed ID: 22791459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Silver and TiO
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():415-436. PubMed ID: 32152995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake.
    Jain AK; Senapati VA; Singh D; Dubey K; Maurya R; Pandey AK
    Food Chem Toxicol; 2017 Jul; 105():127-139. PubMed ID: 28400324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric assay of lung macrophage uptake of environmental particulates.
    Stringer B; Imrich A; Kobzik L
    Cytometry; 1995 May; 20(1):23-32. PubMed ID: 7600897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of Dark-Field and Confocal Microscopy for the Optical Detection of Silver and Titanium Nanoparticles in Mammalian Cells.
    Zucker RM; Boyes WK
    Methods Mol Biol; 2020; 2118():395-414. PubMed ID: 32152994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1.
    Jiang X; Foldbjerg R; Miclaus T; Wang L; Singh R; Hayashi Y; Sutherland D; Chen C; Autrup H; Beer C
    Toxicol Lett; 2013 Sep; 222(1):55-63. PubMed ID: 23872614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle uptake measured by flow cytometry.
    Ibuki Y; Toyooka T
    Methods Mol Biol; 2012; 926():157-66. PubMed ID: 22975963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA can sediment TiO2 particles and decrease the uptake potential by mammalian cells.
    Toyooka T; Amano T; Suzuki H; Ibuki Y
    Sci Total Environ; 2009 Mar; 407(7):2143-50. PubMed ID: 19150108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evaluation of experimental light activated gels for tooth bleaching.
    Kurzmann C; Verheyen J; Coto M; Kumar RV; Divitini G; Shokoohi-Tabrizi HA; Verheyen P; De Moor RJG; Moritz A; Agis H
    Photochem Photobiol Sci; 2019 May; 18(5):1009-1019. PubMed ID: 30724960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles.
    Theogaraj E; Riley S; Hughes L; Maier M; Kirkland D
    Mutat Res; 2007 Dec; 634(1-2):205-19. PubMed ID: 17855159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of Ag and TiO2 nanoparticles by zebrafish embryos in the presence of other contaminants in the aquatic environment.
    Pavagadhi S; Sathishkumar M; Balasubramanian R
    Water Res; 2014 May; 55():280-91. PubMed ID: 24631877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro cytotoxicity and genotoxicity studies of titanium dioxide (TiO2) nanoparticles in Chinese hamster lung fibroblast cells.
    Hamzeh M; Sunahara GI
    Toxicol In Vitro; 2013 Mar; 27(2):864-73. PubMed ID: 23274916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.