These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 17533874)
1. In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Roberts AP; Mount AS; Seda B; Souther J; Qiao R; Lin S; Ke PC; Rao AM; Klaine SJ Environ Sci Technol; 2007 Apr; 41(8):3025-9. PubMed ID: 17533874 [TBL] [Abstract][Full Text] [Related]
2. Lipid coating increases uptake of nanotubes. Chatterjee R Environ Sci Technol; 2007 Apr; 41(8):2657-8. PubMed ID: 17533819 [No Abstract] [Full Text] [Related]
3. Bioaccumulation, stress, and swimming impairment in Daphnia magna exposed to multiwalled carbon nanotubes, graphene, and graphene oxide. Cano AM; Maul JD; Saed M; Shah SA; Green MJ; Cañas-Carrell JE Environ Toxicol Chem; 2017 Aug; 36(8):2199-2204. PubMed ID: 28160491 [TBL] [Abstract][Full Text] [Related]
4. Reduced cadmium accumulation and toxicity in Daphnia magna under carbon nanotube exposure. Liu J; Wang WX Environ Toxicol Chem; 2015 Dec; 34(12):2824-32. PubMed ID: 26094590 [TBL] [Abstract][Full Text] [Related]
5. Influence of polyethyleneimine graftings of multi-walled carbon nanotubes on their accumulation and elimination by and toxicity to Daphnia magna. Petersen EJ; Pinto RA; Mai DJ; Landrum PF; Weber WJ Environ Sci Technol; 2011 Feb; 45(3):1133-8. PubMed ID: 21182278 [TBL] [Abstract][Full Text] [Related]
6. Effects of suspended multi-walled carbon nanotubes on daphnid growth and reproduction. Alloy MM; Roberts AP Ecotoxicol Environ Saf; 2011 Oct; 74(7):1839-43. PubMed ID: 21764452 [TBL] [Abstract][Full Text] [Related]
7. Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS(III) and AS(V)] to Daphnia magna: The role of certain arsenic species. Wang X; Qu R; Allam AA; Ajarem J; Wei Z; Wang Z Environ Toxicol Chem; 2016 Jul; 35(7):1852-9. PubMed ID: 26681408 [TBL] [Abstract][Full Text] [Related]
8. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to Daphnia magna. Qin L; Huang Q; Wei Z; Wang L; Wang Z Environ Toxicol Pharmacol; 2014 Jul; 38(1):199-204. PubMed ID: 24956399 [TBL] [Abstract][Full Text] [Related]
9. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: The role of catalyst impurities and adsorption capacity. Wang X; Qu R; Liu J; Wei Z; Wang L; Yang S; Huang Q; Wang Z Environ Pollut; 2016 Jan; 208(Pt B):732-8. PubMed ID: 26561447 [TBL] [Abstract][Full Text] [Related]
10. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna. Kim KT; Klaine SJ; Lin S; Ke PC; Kim SD Environ Toxicol Chem; 2010 Jan; 29(1):122-6. PubMed ID: 20821426 [TBL] [Abstract][Full Text] [Related]
11. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna. Jang MH; Hwang YS PLoS One; 2018; 13(3):e0194935. PubMed ID: 29596457 [TBL] [Abstract][Full Text] [Related]
12. Exposure to sublethal concentrations of Co Heinlaan M; Muna M; Juganson K; Oriekhova O; Stoll S; Kahru A; Slaveykova VI Aquat Toxicol; 2017 Aug; 189():123-133. PubMed ID: 28623688 [TBL] [Abstract][Full Text] [Related]
13. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna. Yu ZG; Wang WX Water Res; 2013 Aug; 47(12):4179-87. PubMed ID: 23582308 [TBL] [Abstract][Full Text] [Related]
14. Sublethal effects of multiwalled carbon nanotube exposure in the invertebrate Daphnia magna. Stanley JK; Laird JG; Kennedy AJ; Steevens JA Environ Toxicol Chem; 2016 Jan; 35(1):200-4. PubMed ID: 26222333 [TBL] [Abstract][Full Text] [Related]
15. The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to Daphnia magna under different pH levels. Wang C; Wei Z; Feng M; Wang L; Wang Z Environ Toxicol Chem; 2014 Nov; 33(11):2522-8. PubMed ID: 25088764 [TBL] [Abstract][Full Text] [Related]
16. Phenanthrene Bioavailability and Toxicity to Daphnia magna in the Presence of Carbon Nanotubes with Different Physicochemical Properties. Zindler F; Glomstad B; Altin D; Liu J; Jenssen BM; Booth AM Environ Sci Technol; 2016 Nov; 50(22):12446-12454. PubMed ID: 27700057 [TBL] [Abstract][Full Text] [Related]
17. Distinct biokinetic behavior of ZnO nanoparticles in Daphnia magna quantified by synthesizing ⁶⁵Zn tracer. Li WM; Wang WX Water Res; 2013 Feb; 47(2):895-902. PubMed ID: 23200802 [TBL] [Abstract][Full Text] [Related]
18. Population level effects of multiwalled carbon nanotubes in Daphnia magna exposed to pulses of triclocarban. Simon A; Preuss TG; Schäffer A; Hollert H; Maes HM Ecotoxicology; 2015 Aug; 24(6):1199-212. PubMed ID: 26003833 [TBL] [Abstract][Full Text] [Related]
19. Effects of azithromycin on feeding behavior and nutrition accumulation of Daphnia magna under the different exposure pathways. Li Y; Ma Y; Yang L; Duan S; Zhou F; Chen J; Liu Y; Zhang B Ecotoxicol Environ Saf; 2020 Jul; 197():110573. PubMed ID: 32278825 [TBL] [Abstract][Full Text] [Related]
20. A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna. Politowski I; Wittmers F; Hennig MP; Siebers N; Goffart B; Roß-Nickoll M; Ottermanns R; Schäffer A NanoImpact; 2021 Apr; 22():100303. PubMed ID: 35559960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]