These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 17533977)

  • 1. [Neuronal mechanism of functional recovery of dexterous finger movements after lesion of the corticospinal tract--studies in a non-human primate model].
    Nishimura Y; Isa T
    Brain Nerve; 2007 May; 59(5):511-20. PubMed ID: 17533977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skilled digit movements in feline and primate--recovery after selective spinal cord lesions.
    Pettersson LG; Alstermark B; Blagovechtchenski E; Isa T; Sasaski S
    Acta Physiol (Oxf); 2007 Feb; 189(2):141-54. PubMed ID: 17250565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation.
    Sasaki S; Isa T; Pettersson LG; Alstermark B; Naito K; Yoshimura K; Seki K; Ohki Y
    J Neurophysiol; 2004 Nov; 92(5):3142-7. PubMed ID: 15175371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys.
    Nishimura Y; Isa T
    Exp Neurol; 2012 May; 235(1):152-61. PubMed ID: 21884698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements.
    Isa T; Ohki Y; Alstermark B; Pettersson LG; Sasaki S
    Physiology (Bethesda); 2007 Apr; 22():145-52. PubMed ID: 17420305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor command for precision grip in the macaque monkey can be mediated by spinal interneurons.
    Alstermark B; Pettersson LG; Nishimura Y; Yoshino-Saito K; Tsuboi F; Takahashi M; Isa T
    J Neurophysiol; 2011 Jul; 106(1):122-6. PubMed ID: 21511706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The corticospinal tract and its role in motor control].
    Isa T
    Brain Nerve; 2012 Nov; 64(11):1331-9. PubMed ID: 23131745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey.
    Isa T; Ohki Y; Seki K; Alstermark B
    J Neurophysiol; 2006 Jun; 95(6):3674-85. PubMed ID: 16495365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compensatory changes at the cerebral cortical level after spinal cord injury.
    Nishimura Y; Isa T
    Neuroscientist; 2009 Oct; 15(5):436-44. PubMed ID: 19826168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forelimb movements in the cat; kinetic features and neuronal control.
    Pettersson LG
    Acta Physiol Scand Suppl; 1990; 594():1-60. PubMed ID: 2080711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys.
    Murata Y; Higo N; Oishi T; Yamashita A; Matsuda K; Hayashi M; Yamane S
    J Neurophysiol; 2008 Feb; 99(2):773-86. PubMed ID: 18094104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of propriospinal neurons to recovery of hand dexterity after corticospinal tract lesions in monkeys.
    Tohyama T; Kinoshita M; Kobayashi K; Isa K; Watanabe D; Kobayashi K; Liu M; Isa T
    Proc Natl Acad Sci U S A; 2017 Jan; 114(3):604-609. PubMed ID: 28049844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract.
    Higo N; Nishimura Y; Murata Y; Oishi T; Yoshino-Saito K; Takahashi M; Tsuboi F; Isa T
    J Comp Neurol; 2009 Oct; 516(6):493-506. PubMed ID: 19672995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manual dexterity and corticospinal connectivity following unilateral section of the cervical spinal cord in the macaque monkey.
    Galea MP; Darian-Smith I
    J Comp Neurol; 1997 May; 381(3):307-19. PubMed ID: 9133570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Control of voluntary movements mediated via propriospinal neurons].
    BlagoveshchenskiÄ­ ED; Pettersson LG; Perfil'ev SN
    Ross Fiziol Zh Im I M Sechenova; 2003 Sep; 89(9):1058-66. PubMed ID: 14758629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury.
    Nishimura Y; Onoe H; Morichika Y; Perfiliev S; Tsukada H; Isa T
    Science; 2007 Nov; 318(5853):1150-5. PubMed ID: 18006750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of fine movements mediated by propriospinal neurons.
    Blagoveshchenskii ED; Pettersson LG; Perfil'ev SN
    Neurosci Behav Physiol; 2005 Mar; 35(3):299-304. PubMed ID: 15875492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of early versus late rehabilitative training on manual dexterity after corticospinal tract lesion in macaque monkeys.
    Sugiyama Y; Higo N; Yoshino-Saito K; Murata Y; Nishimura Y; Oishi T; Isa T
    J Neurophysiol; 2013 Jun; 109(12):2853-65. PubMed ID: 23515793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of Corticospinal Projections after Prominent Recovery of Finger Dexterity from Partial Spinal Cord Injury in Macaque Monkeys.
    Sawada M; Yoshino-Saito K; Ninomiya T; Oishi T; Yamashita T; Onoe H; Takada M; Nishimura Y; Isa T
    eNeuro; 2023 Aug; 10(8):. PubMed ID: 37468328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.