BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 17534424)

  • 1. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.
    Ignoul S; Simaels J; Hermans D; Annaert W; Eggermont J
    PLoS One; 2007 May; 2(5):e474. PubMed ID: 17534424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins.
    Scheel O; Zdebik AA; Lourdel S; Jentsch TJ
    Nature; 2005 Jul; 436(7049):424-7. PubMed ID: 16034422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2).
    He Y; Ramsay AJ; Hunt ML; Whitbread AK; Myers SA; Hooper JD
    Biochem J; 2008 May; 412(1):45-55. PubMed ID: 18260827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes.
    Cabrita MA; Hobman TC; Hogue DL; King KM; Cass CE
    Cancer Res; 1999 Oct; 59(19):4890-7. PubMed ID: 10519401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two splice variants derived from a Drosophila melanogaster candidate ClC gene generate ClC-2-type Cl- channels.
    Flores CA; Niemeyer MI; Sepúlveda FV; Cid LP
    Mol Membr Biol; 2006; 23(2):149-56. PubMed ID: 16754358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific N-glycosylation of the ClC-3 chloride channel.
    Schmieder S; Lindenthal S; Ehrenfeld J
    Biochem Biophys Res Commun; 2001 Aug; 286(3):635-40. PubMed ID: 11511107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and targeting to the plasma membrane of xClC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney.
    Maulet Y; Lambert RC; Mykita S; Mouton J; Partisani M; Bailly Y; Bombarde G; Feltz A
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):737-43. PubMed ID: 10359659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial segregation of degradation- and recycling-trafficking pathways in COS-1 cells.
    Misaki R; Nakagawa T; Fukuda M; Taniguchi N; Taguchi T
    Biochem Biophys Res Commun; 2007 Aug; 360(3):580-5. PubMed ID: 17606221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: role of a tyrosine endocytosis motif in surface retrieval.
    Cornejo I; Niemeyer MI; Zúñiga L; Yusef YR; Sepúlveda FV; Cid LP
    J Cell Physiol; 2009 Dec; 221(3):650-7. PubMed ID: 19711355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting.
    Yorikawa C; Shibata H; Waguri S; Hatta K; Horii M; Katoh K; Kobayashi T; Uchiyama Y; Maki M
    Biochem J; 2005 Apr; 387(Pt 1):17-26. PubMed ID: 15511219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endolyn is a mucin-like type I membrane protein targeted to lysosomes by its cytoplasmic tail.
    Ihrke G; Gray SR; Luzio JP
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):287-96. PubMed ID: 10620506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1-4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface.
    Castle A; Castle D
    J Cell Sci; 2005 Aug; 118(Pt 16):3769-80. PubMed ID: 16105885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RIN3: a novel Rab5 GEF interacting with amphiphysin II involved in the early endocytic pathway.
    Kajiho H; Saito K; Tsujita K; Kontani K; Araki Y; Kurosu H; Katada T
    J Cell Sci; 2003 Oct; 116(Pt 20):4159-68. PubMed ID: 12972505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane folding of the human erythrocyte anion exchanger (AE1, Band 3) determined by scanning and insertional N-glycosylation mutagenesis.
    Popov M; Li J; Reithmeier RA
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):269-79. PubMed ID: 10191257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutagenesis of N-glycosylation sites in the human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial for correct delivery of the receptor to plasma membrane.
    Couvineau A; Fabre C; Gaudin P; Maoret JJ; Laburthe M
    Biochemistry; 1996 Feb; 35(6):1745-52. PubMed ID: 8639654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired acidification in early endosomes of ClC-5 deficient proximal tubule.
    Hara-Chikuma M; Wang Y; Guggino SE; Guggino WB; Verkman AS
    Biochem Biophys Res Commun; 2005 Apr; 329(3):941-6. PubMed ID: 15752747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Barttin binds to the outer lateral surface of the ClC-K2 chloride channel.
    Tajima M; Hayama A; Rai T; Sasaki S; Uchida S
    Biochem Biophys Res Commun; 2007 Nov; 362(4):858-64. PubMed ID: 17767918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of P2B/LAMP-1, a major protein target of a metastasis-associated oligosaccharide structure.
    Heffernan M; Yousefi S; Dennis JW
    Cancer Res; 1989 Nov; 49(21):6077-84. PubMed ID: 2676155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular localization of ClC chloride channels and their ability to form hetero-oligomers.
    Suzuki T; Rai T; Hayama A; Sohara E; Suda S; Itoh T; Sasaki S; Uchida S
    J Cell Physiol; 2006 Mar; 206(3):792-8. PubMed ID: 16222710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-glycosylation of the Xenopus laevis ClC-5 protein plays a role in cell surface expression, affecting transport activity at the plasma membrane.
    Schmieder S; Bogliolo S; Ehrenfeld J
    J Cell Physiol; 2007 Feb; 210(2):479-88. PubMed ID: 17111367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.