BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17534531)

  • 1. Heme to protein linkages in mammalian peroxidases: impact on spectroscopic, redox and catalytic properties.
    Zederbauer M; Furtmüller PG; Brogioni S; Jakopitsch C; Smulevich G; Obinger C
    Nat Prod Rep; 2007 Jun; 24(3):571-84. PubMed ID: 17534531
    [No Abstract]   [Full Text] [Related]  

  • 2. Active site structure and catalytic mechanisms of human peroxidases.
    Furtmüller PG; Zederbauer M; Jantschko W; Helm J; Bogner M; Jakopitsch C; Obinger C
    Arch Biochem Biophys; 2006 Jan; 445(2):199-213. PubMed ID: 16288970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways.
    Pérez-Boada M; Ruiz-Dueñas FJ; Pogni R; Basosi R; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    J Mol Biol; 2005 Nov; 354(2):385-402. PubMed ID: 16246366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation and catalysis of the di-heme cytochrome c peroxidase from Paracoccus pantotrophus.
    Echalier A; Goodhew CF; Pettigrew GW; Fülöp V
    Structure; 2006 Jan; 14(1):107-17. PubMed ID: 16407070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox thermodynamics of lactoperoxidase and eosinophil peroxidase.
    Battistuzzi G; Bellei M; Vlasits J; Banerjee S; Furtmüller PG; Sola M; Obinger C
    Arch Biochem Biophys; 2010 Feb; 494(1):72-7. PubMed ID: 19944669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism in the bacterial dihaem cytochrome c peroxidases.
    Pettigrew GW; Echalier A; Pauleta SR
    J Inorg Biochem; 2006 Apr; 100(4):551-67. PubMed ID: 16434100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox properties of heme peroxidases.
    Battistuzzi G; Bellei M; Bortolotti CA; Sola M
    Arch Biochem Biophys; 2010 Aug; 500(1):21-36. PubMed ID: 20211593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Tyr residues on the protein surface of cationic cell-wall-peroxidase (CWPO-C) from poplar: potential oxidation sites for oxidative polymerization of lignin.
    Sasaki S; Nonaka D; Wariishi H; Tsutsumi Y; Kondo R
    Phytochemistry; 2008 Jan; 69(2):348-55. PubMed ID: 17910963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding heme cavity structure of peroxidases: comparison of electronic absorption and resonance Raman spectra with crystallographic results.
    Smulevich G
    Biospectroscopy; 1998; 4(5 Suppl):S3-17. PubMed ID: 9787910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A catalytic approach to estimate the redox potential of heme-peroxidases.
    Ayala M; Roman R; Vazquez-Duhalt R
    Biochem Biophys Res Commun; 2007 Jun; 357(3):804-8. PubMed ID: 17442271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron oxidation state modulates active site structure in a heme peroxidase.
    Badyal SK; Metcalfe CL; Basran J; Efimov I; Moody PC; Raven EL
    Biochemistry; 2008 Apr; 47(15):4403-9. PubMed ID: 18351739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray crystal structural analysis of the binding site in the ferric and oxyferrous forms of the recombinant heme dehaloperoxidase cloned from Amphitrite ornata.
    de Serrano V; Chen Z; Davis MF; Franzen S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1094-101. PubMed ID: 17881827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different modes of binding of mono-, di-, and trihalogenated phenols to the hemoglobin dehaloperoxidase from Amphitrite ornata.
    Davis MF; Gracz H; Vendeix FA; de Serrano V; Somasundaram A; Decatur SM; Franzen S
    Biochemistry; 2009 Mar; 48(10):2164-72. PubMed ID: 19228049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manganese peroxidase.
    Gold MH; Youngs HL; Gelpke MD
    Met Ions Biol Syst; 2000; 37():559-86. PubMed ID: 10693145
    [No Abstract]   [Full Text] [Related]  

  • 15. [Resonance Raman and surface-enhanced Raman spectroscopic study of microperoxidase-11].
    Zheng J; Gu R; Lu T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Oct; 20(5):689-91. PubMed ID: 12945420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of two peroxidases from Cucumis sativus.
    Battistuzzi G; D'Onofrio M; Loschi L; Sola M
    Arch Biochem Biophys; 2001 Apr; 388(1):100-12. PubMed ID: 11361125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified microperoxidases exhibit different reactivity towards phenolic substrates.
    Dallacosta C; Casella L; Monzani E
    Chembiochem; 2004 Dec; 5(12):1692-9. PubMed ID: 15532028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking.
    Hallingbäck HR; Gabdoulline RR; Wade RC
    Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heme-protein covalent bonds in peroxidases and resistance to heme modification during halide oxidation.
    Huang L; Ortiz de Montellano PR
    Arch Biochem Biophys; 2006 Feb; 446(1):77-83. PubMed ID: 16375846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate binding triggers a switch in the iron coordination in dehaloperoxidase from Amphitrite ornata: HYSCORE experiments.
    Smirnova TI; Weber RT; Davis MF; Franzen S
    J Am Chem Soc; 2008 Feb; 130(7):2128-9. PubMed ID: 18217756
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.