BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 17534650)

  • 1. Feedback control of the limbs position during voluntary rhythmic oscillation.
    Esposti R; Cavallari P; Baldissera F
    Biol Cybern; 2007 Aug; 97(2):123-36. PubMed ID: 17534650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of hand and foot voluntary oscillations in patients suffering cerebellar ataxia: different effect of lateral or medial lesions on coordination.
    Cerri G; Esposti R; Locatelli M; Cavallari P
    Prog Brain Res; 2005; 148():227-41. PubMed ID: 15661194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural compensation for mechanical loading of the hand during coupled oscillations of the hand and foot.
    Baldissera F; Cavallari P
    Exp Brain Res; 2001 Jul; 139(1):18-29. PubMed ID: 11482840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrony of hand-foot coupled movements: is it attained by mutual feedback entrainment or by independent linkage of each limb to a common rhythm generator?
    Baldissera FG; Cavallari P; Esposti R
    BMC Neurosci; 2006 Oct; 7():70. PubMed ID: 17067367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partition of voluntary command to antagonist muscles during cyclic flexion-extension of the hand.
    Esposti R; Cavallari P; Baldissera F
    Exp Brain Res; 2005 May; 162(4):436-48. PubMed ID: 15690157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic h-reflex modulation in resting forearm related to contractions of foot movers, not to foot movement.
    Cerri G; Borroni P; Baldissera F
    J Neurophysiol; 2003 Jul; 90(1):81-8. PubMed ID: 12634273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments.
    Masani K; Vette AH; Popovic MR
    Gait Posture; 2006 Feb; 23(2):164-72. PubMed ID: 16399512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What is the role of muscle receptors in proprioception?
    Proske U
    Muscle Nerve; 2005 Jun; 31(6):780-7. PubMed ID: 15818635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural compensation for mechanical differences between hand and foot during coupled oscillations of the two segments.
    Baldissera F; Borroni P; Cavallari P
    Exp Brain Res; 2000 Jul; 133(2):165-77. PubMed ID: 10968217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying proprioceptive reflexes during position control of the human arm.
    Schouten AC; de Vlugt E; van Hilten JJ; van der Helm FC
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):311-21. PubMed ID: 18232375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-paced movements induce high-frequency gamma oscillations in primary motor cortex.
    Cheyne D; Bells S; Ferrari P; Gaetz W; Bostan AC
    Neuroimage; 2008 Aug; 42(1):332-42. PubMed ID: 18511304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural compensation for compliant loads during rhythmic movement.
    Mackey DC; Meichenbaum DP; Shemmell J; Riek S; Carson RG
    Exp Brain Res; 2002 Feb; 142(3):409-17. PubMed ID: 11819050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of posture-related changes in motor cortical output on central oscillatory activity of pathological origin in humans.
    Mazzocchio R; Gelli F; Del Santo F; Popa T; Rossi A
    Brain Res; 2008 Aug; 1223():65-72. PubMed ID: 18597745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy efficient and robust rhythmic limb movement by central pattern generators.
    Verdaasdonk BW; Koopman HF; Helm FC
    Neural Netw; 2006 May; 19(4):388-400. PubMed ID: 16352419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of peripheral afference during acquisition of a complex coordination task.
    Carson RG; Smethurst CJ; Forner M; Meichenbaum DP; Mackey DC
    Exp Brain Res; 2002 Jun; 144(4):496-505. PubMed ID: 12037634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S; Massaquoi SG
    Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The discontinuous nature of motor execution II. Merging discrete and rhythmic movements in a single-joint system -- the phase entrainment effect.
    Staude G; Dengler R; Wolf W
    Biol Cybern; 2002 Jun; 86(6):427-43. PubMed ID: 12111272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.