BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17534726)

  • 21. [Effect of immobilization on biosensor for benzene derivates detection].
    Tang K; Ma AZ; Yu Q; Deng XM; Lü D; Zhuang GQ
    Huan Jing Ke Xue; 2013 Feb; 34(2):760-6. PubMed ID: 23668152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic dehalogenation of pentachlorophenol by Pseudomonas fluorescens of the microbial community from tannery effluent.
    Shah S; Thakur IS
    Curr Microbiol; 2003 Jul; 47(1):65-70. PubMed ID: 12783196
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii (Bacillariophyceae).
    Kang YH; Kim BR; Choi HJ; Seo JG; Kim BH; Han MS
    J Appl Microbiol; 2007 Nov; 103(5):1983-94. PubMed ID: 17953609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Horizontal transfer of catabolic plasmids in the process of naphthalene biodegradation in model soil systems].
    Akhmetov LI; Filonov AE; Puntus IF; Kosheleva IA; Nechaeva IA; Yonge DR; Petersen JN; Boronin AM
    Mikrobiologiia; 2008; 77(1):29-39. PubMed ID: 18365719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents.
    Dos Santos VL; Monteiro Ade S; Braga DT; Santoro MM
    J Hazard Mater; 2009 Jan; 161(2-3):1413-20. PubMed ID: 18541369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrical wiring of Pseudomonas putida and Pseudomonas fluorescens with osmium redox polymers.
    Timur S; Haghighi B; Tkac J; Pazarlioğlu N; Telefoncu A; Gorton L
    Bioelectrochemistry; 2007 Sep; 71(1):38-45. PubMed ID: 17011836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic selection of the non-aqueous phase in a bacterial two liquid phase bioreactor treating alpha-pinene.
    Muñoz R; Chambaud M; Bordel S; Villaverde S
    Appl Microbiol Biotechnol; 2008 May; 79(1):33-41. PubMed ID: 18322681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibitory effects of catechol accumulation on benzene biodegradation in Pseudomonas putida F1 cultures.
    Muñoz R; Díaz LF; Bordel S; Villaverde S
    Chemosphere; 2007 Jun; 68(2):244-52. PubMed ID: 17316748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substrate interactions during anaerobic biodegradation of BTEX by the mixed cultures under nitrate reducing conditions.
    Dou J; Liu X; Hu Z
    J Hazard Mater; 2008 Oct; 158(2-3):264-72. PubMed ID: 18325662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerobic MTBE biodegradation in the presence of BTEX by two consortia under batch and semi-batch conditions.
    Raynal M; Pruden A
    Biodegradation; 2008 Apr; 19(2):269-82. PubMed ID: 17562189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam.
    Manohar S; Kim CK; Karegoudar TB
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):311-6. PubMed ID: 11341312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1.
    Chen D; Chen J; Zhong W; Cheng Z
    Bioresour Technol; 2008 Jul; 99(11):4702-8. PubMed ID: 17983743
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol.
    Kwon KH; Yeom SH
    Bioprocess Biosyst Eng; 2009 Jun; 32(4):435-42. PubMed ID: 18825419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison between entrapment methods for phenol removal and operation of bioreactor packed with co-entrapped activated carbon and Pseudomonas fluorescence KNU417.
    Kwon KH; Jung KY; Yeom SH
    Bioprocess Biosyst Eng; 2009 Feb; 32(2):249-56. PubMed ID: 18633648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of substrates and cell immobilization on siderophore activity by Pseudomonads in a Fe and/or Cr, Hg, Pb containing-medium.
    Braud A; Jézéquel K; Lebeau T
    J Hazard Mater; 2007 Jun; 144(1-2):229-39. PubMed ID: 17112663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Dependence of extracellular proteases synthesis on the growth phase of Pseudomonas fluorescens].
    Mikel'saar PCh; Vilu RO; Lakht TI
    Mikrobiologiia; 1982; 51(2):212-5. PubMed ID: 6806575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of substrate interaction on the degradation of methyl tert-butyl ether, benzene, toluene, ethylbenzene, and xylene by Rhodococcus sp.
    Lee EH; Cho KS
    J Hazard Mater; 2009 Aug; 167(1-3):669-74. PubMed ID: 19201538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of alkaline metalloprotease promoter by N-acyl homoserine lactone quorum sensing in Pseudomonas fluorescens.
    Liu M; Wang H; Griffiths MW
    J Appl Microbiol; 2007 Dec; 103(6):2174-84. PubMed ID: 18045400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosurfactant production by free and alginate entrapped cells of Pseudomonas fluorescens.
    Abouseoud M; Yataghene A; Amrane A; Maachi R
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1303-8. PubMed ID: 18712561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Degradation of 3,4-dichloroaniline by Pseudomonas fluorescens 26-K].
    Travkin VM; Golovleva LA
    Mikrobiologiia; 2003; 72(2):279-81. PubMed ID: 12751255
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.