These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17534726)

  • 61. Influence of side-chain substituents on the position of cleavage of the benzene ring by Pseudomonas fluorescens.
    Seidman MM; Toms A; Wood JM
    J Bacteriol; 1969 Mar; 97(3):1192-7. PubMed ID: 5776526
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Catalytic properties of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13 immobilized on nanosponges.
    Di Nardo G; Roggero C; Campolongo S; Valetti F; Trotta F; Gilardi G
    Dalton Trans; 2009 Sep; (33):6507-12. PubMed ID: 19672496
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biodegradation kinetics of tetrahydrofuran, benzene, toluene, and ethylbenzene as multi-substrate by Pseudomonas oleovorans DT4.
    Chen DZ; Ding YF; Zhou YY; Ye JX; Chen JM
    Int J Environ Res Public Health; 2014 Dec; 12(1):371-84. PubMed ID: 25561017
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Relative gene expression quantification in a fungal gas-phase biofilter.
    Gunsch CK; Kinney KA; Szaniszlo PJ; Whitman CP
    Biotechnol Bioeng; 2007 Sep; 98(1):101-11. PubMed ID: 17318912
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1].
    Kitova AE; Kuvichkina TN; Arinbasarova AIu; Reshetilov AN
    Prikl Biokhim Mikrobiol; 2004; 40(3):307-11. PubMed ID: 15283333
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism in Pseudomonas fluorescens.
    Fava F; Di Gioia D; Romagnoli C; Marchetti L; Mares D
    Arch Microbiol; 1993; 160(5):350-7. PubMed ID: 8257280
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Treatment of succinonitrile wastewater by immobilized high efficiency microorganism strains.
    Zhou XF; Zhang YL; Xu DQ; Cao WH; Dai CM; Qiang ZM; Yang Z; Zhao JF
    Water Sci Technol; 2008; 58(4):911-8. PubMed ID: 18776629
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enzymes of naphthalene metabolism by Pseudomonas fluorescens 26K strain.
    Leneva NA; Kolomytseva MP; Baskunov BP; Golovleva LA
    Biochemistry (Mosc); 2010 May; 75(5):562-9. PubMed ID: 20632934
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates.
    Knackmuss HJ
    Biochem Soc Symp; 1983; 48():173-90. PubMed ID: 6400482
    [No Abstract]   [Full Text] [Related]  

  • 70. [Growth and substrate utilization by bacterial lawn on the agar surface: experiment and one-dimensional distributed model].
    Belova SE; Dorofeev AG; Panikov NS
    Mikrobiologiia; 1996; 65(6):790-5. PubMed ID: 9102555
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Incompatibility group P-7 plasmids responsible for biodegradation of naphthalene and salicylate in fluorescent pseudomonads].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(3):342-8. PubMed ID: 16119847
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metal biosorption capacity of the organic solvent tolerant Pseudomonas fluorescens TEM08.
    Uzel A; Ozdemir G
    Bioresour Technol; 2009 Jan; 100(2):542-8. PubMed ID: 18657416
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7.
    Hasegawa Y; Muraki T; Tokuyama T; Iwaki H; Tatsuno M; Lau PC
    FEMS Microbiol Lett; 2000 Sep; 190(2):185-90. PubMed ID: 11034277
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of cell-surface hydrophobicity on bacterial conversion of water-immiscible chemicals in two-liquid-phase culture systems.
    Hamada T; Maeda Y; Matsuda H; Sameshima Y; Honda K; Omasa T; Kato J; Ohtake H
    J Biosci Bioeng; 2009 Aug; 108(2):116-20. PubMed ID: 19619857
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A membrane bioreactor for the biotransformation of alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671.
    Boontawan A; Stuckey DC
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):643-9. PubMed ID: 16088347
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Formation of structured communities by natural and transgenic naphthalene-consuming bacteria].
    Mogil'naia OA; Krivomazova ES; Kargatova TV; Lobova TI; Popova LIu
    Prikl Biokhim Mikrobiol; 2005; 41(1):72-8. PubMed ID: 15810736
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction.
    Dou J; Liu X; Hu Z; Deng D
    J Hazard Mater; 2008 Mar; 151(2-3):720-9. PubMed ID: 17640804
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Performance and kinetics of triclocarban removal by entrapped Pseudomonas fluorescens strain MC46.
    Taweetanawanit P; Ratpukdi T; Siripattanakul-Ratpukdi S
    Bioresour Technol; 2019 Feb; 274():113-119. PubMed ID: 30502601
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Transport of heterologous proteins to the periplasmic space of Pseudomonas fluorescens using a variety of native signal sequences.
    Retallack DM; Schneider JC; Mitchell J; Chew L; Liu H
    Biotechnol Lett; 2007 Oct; 29(10):1483-91. PubMed ID: 17541504
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Structural and physiological diversity among cystlike resting cells of bacteria of the genus Pseudomonas].
    Muliukin AL; Suzina NE; Duda VI; El'-Registan GI
    Mikrobiologiia; 2008; 77(4):512-23. PubMed ID: 18825979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.