These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 175353)
1. Specific spin-labeling of transfer ribonucleic acid molecules. Caron M; Dugas H Nucleic Acids Res; 1976 Jan; 3(1):19-34. PubMed ID: 175353 [TBL] [Abstract][Full Text] [Related]
2. A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs. Caron M; Dugas H Nucleic Acids Res; 1976 Jan; 3(1):35-47. PubMed ID: 175354 [TBL] [Abstract][Full Text] [Related]
3. Changes in tertiary structure accompanying a single base change in transfer RNA. Proton magnetic resonance and aminoacylation studies of Escherichia coli tRNAMet f1 and tRNAMet f3 and their spin-labeled (s4U8) derivatives. Daniel WE; Cohn M Biochemistry; 1976 Sep; 15(18):3917-24. PubMed ID: 183808 [TBL] [Abstract][Full Text] [Related]
4. Photolabile and paramagnetic derivatives of the nucleoside X and of Escherichia coli tRNAPhe. Hansske F; Watanabe K; Cramer F; Seela F Hoppe Seylers Z Physiol Chem; 1978 Dec; 359(12):1659-65. PubMed ID: 216614 [TBL] [Abstract][Full Text] [Related]
5. A specific spin labeling of the anticodon of E. coli tRNA-Glu. McIntosh AR; Caron M; Dugas H Biochem Biophys Res Commun; 1973 Dec; 55(4):1356-63. PubMed ID: 4358937 [No Abstract] [Full Text] [Related]
6. [Study on the conformational state of Escherichia coli tRNA-Phe in solution by ESR-spectometry without modulation]. Bondarev GN; Isaev-Ivanov VV; Isaeva-Ivanova LS; Kirillov SV; Kleĭner AR Mol Biol (Mosk); 1982; 16(2):352-62. PubMed ID: 6175894 [TBL] [Abstract][Full Text] [Related]
7. Europium as a fluorescent probe of transfer RNA structure. Wolfson JM; Kearns DR Biochemistry; 1975 Apr; 14(7):1436-44. PubMed ID: 1092336 [TBL] [Abstract][Full Text] [Related]
8. Properies of tRNAPhe from yeast carrying a spin label on the 3'-terminal. Interaction with yeast phenylalanyl-tRNA Synthetase and elongation factor Tu from Escherichia coli. Sprinzl M; Siboska GE; Pedersen JA Nucleic Acids Res; 1978 Mar; 5(3):861-77. PubMed ID: 205839 [TBL] [Abstract][Full Text] [Related]
9. The structural basis for the resistance of Escherichia coli formylmethionyl transfer ribonucleic acid to cleavage by Escherichia coli peptidyl transfer ribonucleic acid hydrolase. Schulman LH; Pelka H J Biol Chem; 1975 Jan; 250(2):542-7. PubMed ID: 1089645 [TBL] [Abstract][Full Text] [Related]
10. tRNA tertiary structure in solution as probed by the photochemically induced 8-13 cross-link. Favre A; Buchingham R; Thomas G Nucleic Acids Res; 1975 Aug; 2(8):1421-31. PubMed ID: 1101224 [TBL] [Abstract][Full Text] [Related]
11. Localization of the binding site for the 3'-terminal sequence of tRNAPhe in subunits of phenylalanyl-tRNA synthetase from Thermus thermophilus. Moor NA; Ankilova VN; Favre A; Lavrik OI Biochemistry (Mosc); 1998 Sep; 63(9):1051-6. PubMed ID: 9795274 [TBL] [Abstract][Full Text] [Related]
12. Flexibility of end-labeled polymers from electron spin resonance line-shape analysis: 3' terminus of transfer ribonucleic acid and 5S ribonucleic acid. Luoma GA; Herring FG; Marshall AG Biochemistry; 1982 Dec; 21(25):6591-8. PubMed ID: 6295470 [TBL] [Abstract][Full Text] [Related]
13. Effects of dilute HCl on yeast tRNAPhe and E. coli tRNA1fMet. Ladner JE; Schweizer MP Nucleic Acids Res; 1974 Feb; 1(2):183-92. PubMed ID: 4606505 [TBL] [Abstract][Full Text] [Related]
14. Affinity modification of phenylalanyl-tRNA synthetase from Thermus thermophilus by tRNAPhe transcripts containing 4-thiouridine. Moor NA; Stepanov VG; Ankilova VN; Favre A; Lavrik OI Biochemistry (Mosc); 1998 Sep; 63(9):1044-50. PubMed ID: 9795273 [TBL] [Abstract][Full Text] [Related]
15. High-resolution NMR investigation of base pairing structure of transfer RNA. Kearns DR; Lightfoot DR; Wong KL; Wong YP; Reid BR; Cary L; Shulman RG Ann N Y Acad Sci; 1973 Dec; 222():324-36. PubMed ID: 4594296 [No Abstract] [Full Text] [Related]
16. Conformational changes of yeast tRNAPhe and E. coli tRNA2Glu as indicated by different nuclease digestion patterns. Wrede P; Wurst R; Vournakis J; Rich A J Biol Chem; 1979 Oct; 254(19):9608-16. PubMed ID: 114514 [TBL] [Abstract][Full Text] [Related]
17. A new bifunctional spin-label suitable for saturation-transfer EPR studies of protein rotational motion. Wilcox MD; Parce JW; Thomas MJ; Lyles DS Biochemistry; 1990 Jun; 29(24):5734-43. PubMed ID: 2166560 [TBL] [Abstract][Full Text] [Related]
18. A method for the isolation of specific tRNA precursors. Vögeli G; Grosjean H; Söll D Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4790-4. PubMed ID: 1108001 [TBL] [Abstract][Full Text] [Related]
19. 15N-labeled Escherichia coli tRNAfMet, tRNAGlu, tRNATyr, and tRNAPhe. Double resonance and two-dimensional NMR of N1-labeled pseudouridine. Griffey RH; Davis D; Yamaizumi Z; Nishimura S; Bax A; Hawkins B; Poulter CD J Biol Chem; 1985 Aug; 260(17):9734-41. PubMed ID: 3894360 [TBL] [Abstract][Full Text] [Related]
20. Use of the method of mixed substrates to study the specificity of tRNA methylases. Gambaryan AS; Venkstern TV; Baev AA Mol Biol (Mosk); 1976; 10(4):697-705. PubMed ID: 799257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]