BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17535331)

  • 1. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity.
    Malmström J; Adolfsson E; Arvidsson A; Thomsen P
    Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone response to free form-fabricated hydroxyapatite and zirconia scaffolds: a histological study in the human maxilla.
    Malmström J; Slotte C; Adolfsson E; Norderyd O; Thomsen P
    Clin Oral Implants Res; 2009 Apr; 20(4):379-85. PubMed ID: 19298291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic deposition of model hydroxyapatite scaffolds with multiple architectures and multiscale porosity for bone tissue engineering.
    Dellinger JG; Cesarano J; Jamison RD
    J Biomed Mater Res A; 2007 Aug; 82(2):383-94. PubMed ID: 17295231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone response to free-form fabricated hydroxyapatite and zirconia scaffolds: a transmission electron microscopy study in the human maxilla.
    Grandfield K; Palmquist A; Ericson F; Malmström J; Emanuelsson L; Slotte C; Adolfsson E; Botton GA; Thomsen P; Engqvist H
    Clin Implant Dent Relat Res; 2012 Jun; 14(3):461-9. PubMed ID: 20156226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.
    Dellinger JG; Eurell JA; Stewart M; Jamison RD
    J Biomed Mater Res A; 2006 Feb; 76(2):366-76. PubMed ID: 16270335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone ingrowth in zirconia and hydroxyapatite scaffolds with identical macroporosity.
    Malmström J; Adolfsson E; Emanuelsson L; Thomsen P
    J Mater Sci Mater Med; 2008 Sep; 19(9):2983-92. PubMed ID: 17483890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of hydroxyapatite bone repair scaffolds created via three-dimensional fabrication techniques.
    Dutta Roy T; Simon JL; Ricci JL; Rekow ED; Thompson VP; Parsons JR
    J Biomed Mater Res A; 2003 Dec; 67(4):1228-37. PubMed ID: 14624509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity.
    Woodard JR; Hilldore AJ; Lan SK; Park CJ; Morgan AW; Eurell JA; Clark SG; Wheeler MB; Jamison RD; Wagoner Johnson AJ
    Biomaterials; 2007 Jan; 28(1):45-54. PubMed ID: 16963118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Healing response of cortical and cancellous bone around titanium implants.
    Lee JE; Heo SJ; Koak JY; Kim SK; Han CH; Lee SJ
    Int J Oral Maxillofac Implants; 2009; 24(4):655-62. PubMed ID: 19885405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone formation following implantation of titanium sponge rods into humeral osteotomies in dogs: a histological and histometrical study.
    Faria PE; Carvalho AL; Felipucci DN; Wen C; Sennerby L; Salata LA
    Clin Implant Dent Relat Res; 2010 Mar; 12(1):72-9. PubMed ID: 19076179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo study on hydroxyapatite scaffolds with trabecular architecture for bone repair.
    Appleford MR; Oh S; Oh N; Ong JL
    J Biomed Mater Res A; 2009 Jun; 89(4):1019-27. PubMed ID: 18478555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microporosity enhances bioactivity of synthetic bone graft substitutes.
    Hing KA; Annaz B; Saeed S; Revell PA; Buckland T
    J Mater Sci Mater Med; 2005 May; 16(5):467-75. PubMed ID: 15875258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias.
    Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E
    J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a cell adhesion molecule coating on the blasted surface of titanium implants on bone healing in the rabbit femur.
    Park JW; Lee SG; Choi BJ; Suh JY
    Int J Oral Maxillofac Implants; 2007; 22(4):533-41. PubMed ID: 17929513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds.
    Dellinger JG; Wojtowicz AM; Jamison RD
    J Biomed Mater Res A; 2006 Jun; 77(3):563-71. PubMed ID: 16498598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cellular culture of osteoblasts and fibroblasts on porous calcium-phosphate bone substitutes].
    Chouteau J; Bignon A; Chavassieux P; Chevalier J; Melin M; Fantozzi G; Boivin G; Hartmann D; Carret JP
    Rev Chir Orthop Reparatrice Appar Mot; 2003 Feb; 89(1):44-52. PubMed ID: 12610435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of enhancement of bone ingrowth into hydroxyapatite ceramics with highly and poorly interconnected pores by electrical polarization.
    Wang W; Itoh S; Tanaka Y; Nagai A; Yamashita K
    Acta Biomater; 2009 Oct; 5(8):3132-40. PubMed ID: 19426842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.