These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 17535580)
1. Bayesian analysis for proportions with an independent background effect. Bi J Br J Math Stat Psychol; 2007 May; 60(Pt 1):71-83. PubMed ID: 17535580 [TBL] [Abstract][Full Text] [Related]
2. Bayesian sample size calculations for a non-inferiority test of two proportions in clinical trials. Daimon T Contemp Clin Trials; 2008 Jul; 29(4):507-16. PubMed ID: 18201944 [TBL] [Abstract][Full Text] [Related]
3. Confidence intervals for a ratio of two independent binomial proportions. Price RM; Bonett DG Stat Med; 2008 Nov; 27(26):5497-508. PubMed ID: 18781560 [TBL] [Abstract][Full Text] [Related]
4. A Bayesian inference of P(π1 > π2) for two proportions. Kawasaki Y; Miyaoka E J Biopharm Stat; 2012; 22(3):425-37. PubMed ID: 22416833 [TBL] [Abstract][Full Text] [Related]
5. Sampling--how big a sample? Aitken CG J Forensic Sci; 1999 Jul; 44(4):750-60. PubMed ID: 10432610 [TBL] [Abstract][Full Text] [Related]
6. Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 x 2 contingency tables. Agresti A; Min Y Biometrics; 2005 Jun; 61(2):515-23. PubMed ID: 16011699 [TBL] [Abstract][Full Text] [Related]
7. Coherent psychometric modelling with Bayesian nonparametrics. Karabatsos G; Walker SG Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):1-20. PubMed ID: 17903345 [TBL] [Abstract][Full Text] [Related]
8. Bayesian sample-size determination for inference on two binomial populations with no gold standard classifier. Stamey JD; Seaman JW; Young DM Stat Med; 2005 Oct; 24(19):2963-76. PubMed ID: 16007574 [TBL] [Abstract][Full Text] [Related]
9. A Bayesian non-inferiority test for two independent binomial proportions. Kawasaki Y; Miyaoka E Pharm Stat; 2013; 12(4):201-6. PubMed ID: 23625633 [TBL] [Abstract][Full Text] [Related]
10. Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses. Kolaczkowski B; Thornton JW Mol Biol Evol; 2007 Sep; 24(9):2108-18. PubMed ID: 17636043 [TBL] [Abstract][Full Text] [Related]
11. Bayesian adaptive estimation of arbitrary points on a psychometric function. García-Pérez MA; Alcalá-Quintana R Br J Math Stat Psychol; 2007 May; 60(Pt 1):147-74. PubMed ID: 17535585 [TBL] [Abstract][Full Text] [Related]
12. Bayesian item fit analysis for unidimensional item response theory models. Sinharay S Br J Math Stat Psychol; 2006 Nov; 59(Pt 2):429-49. PubMed ID: 17067420 [TBL] [Abstract][Full Text] [Related]
13. Robust Bayesian sample size determination in clinical trials. Brutti P; De Santis F; Gubbiotti S Stat Med; 2008 Jun; 27(13):2290-306. PubMed ID: 18205170 [TBL] [Abstract][Full Text] [Related]
15. Accounting for historical information in designing experiments: the Bayesian approach. De Santis F; Perone Pacifico M Ann Ist Super Sanita; 2004; 40(2):173-9. PubMed ID: 15536267 [TBL] [Abstract][Full Text] [Related]
16. Bayesian sample size calculations in phase II clinical trials using informative conjugate priors. Mayo MS; Gajewski BJ Control Clin Trials; 2004 Apr; 25(2):157-67. PubMed ID: 15020034 [TBL] [Abstract][Full Text] [Related]
17. Spiking networks for Bayesian inference and choice. Ma WJ; Beck JM; Pouget A Curr Opin Neurobiol; 2008 Apr; 18(2):217-22. PubMed ID: 18678253 [TBL] [Abstract][Full Text] [Related]
19. A cluster-adjusted sample size algorithm for proportions was developed using a beta-binomial model. Fosgate GT J Clin Epidemiol; 2007 Mar; 60(3):250-5. PubMed ID: 17292018 [TBL] [Abstract][Full Text] [Related]
20. Finite mixture models for proportions. Brooks SP; Morgan BJ; Ridout MS; Pack SE Biometrics; 1997 Sep; 53(3):1097-115. PubMed ID: 9333342 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]