BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17535816)

  • 1. Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis.
    Jerga A; Lu YJ; Schujman GE; de Mendoza D; Rock CO
    J Biol Chem; 2007 Jul; 282(30):21738-45. PubMed ID: 17535816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Bacillus subtilis essential gene dgkB is dispensable in mutants with defective lipoteichoic acid synthesis.
    Matsuoka S; Hashimoto M; Kamiya Y; Miyazawa T; Ishikawa K; Hara H; Matsumoto K
    Genes Genet Syst; 2011; 86(6):365-76. PubMed ID: 22451476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes.
    Wörmann ME; Corrigan RM; Simpson PJ; Matthews SJ; Gründling A
    Mol Microbiol; 2011 Feb; 79(3):566-83. PubMed ID: 21255105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prokaryotic diacylglycerol kinase and undecaprenol kinase.
    Van Horn WD; Sanders CR
    Annu Rev Biophys; 2012; 41():81-101. PubMed ID: 22224599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of 3,4-dihydroxybutyl-1-phosphonate on phosphoglyceride and lipoteichoic acid synthesis in Bacillus subtilis.
    Deutsch RM; Engel R; Tropp BE
    J Biol Chem; 1980 Feb; 255(4):1521-5. PubMed ID: 6153387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus subtilis diacylglycerol kinase (DgkA) enhances efficient sporulation.
    Amiteye S; Kobayashi K; Imamura D; Hosoya S; Ogasawara N; Sato T
    J Bacteriol; 2003 Sep; 185(17):5306-9. PubMed ID: 12923107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis acyl carrier protein is encoded in a cluster of lipid biosynthesis genes.
    Morbidoni HR; de Mendoza D; Cronan JE
    J Bacteriol; 1996 Aug; 178(16):4794-800. PubMed ID: 8759840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Products of phosphatidylglycerol turnover in two Bacillus strains with and without lipoteichoic acid in the cells.
    Koga Y; Nishihara M; Morii H
    Biochim Biophys Acta; 1984 Mar; 793(1):86-94. PubMed ID: 6422993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The degA gene product accelerates degradation of Bacillus subtilis phosphoribosylpyrophosphate amidotransferase in Escherichia coli.
    Bussey LB; Switzer RL
    J Bacteriol; 1993 Oct; 175(19):6348-53. PubMed ID: 8407808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of sn-glycerol 3-phosphate, a key precursor of membrane lipids, in Bacillus subtilis.
    Morbidoni HR; de Mendoza D; Cronan JE
    J Bacteriol; 1995 Oct; 177(20):5899-905. PubMed ID: 7592341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus.
    Gründling A; Schneewind O
    Proc Natl Acad Sci U S A; 2007 May; 104(20):8478-83. PubMed ID: 17483484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming and elongation: dissection of the lipoteichoic acid biosynthetic pathway in Gram-positive bacteria.
    Sutcliffe IC
    Mol Microbiol; 2011 Feb; 79(3):553-6. PubMed ID: 21255102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo and in vitro characterization of the secA gene product of Bacillus subtilis.
    Takamatsu H; Fuma S; Nakamura K; Sadaie Y; Shinkai A; Matsuyama S; Mizushima S; Yamane K
    J Bacteriol; 1992 Jul; 174(13):4308-16. PubMed ID: 1385592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and glycosylation of lipoteichoic acids in Bacillus strains.
    Iwasaki H; Shimada A; Yokoyama K; Ito E
    J Bacteriol; 1989 Jan; 171(1):424-9. PubMed ID: 2914853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UMP kinase from the Gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity.
    Gagyi C; Bucurenci N; Sîrbu O; Labesse G; Ionescu M; Ofiteru A; Assairi L; Landais S; Danchin A; Bârzu O; Gilles AM
    Eur J Biochem; 2003 Aug; 270(15):3196-204. PubMed ID: 12869195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and complementation analysis of recF genes from Escherichia coli, Salmonella typhimurium, Pseudomonas putida and Bacillus subtilis: evidence for an essential phosphate binding loop.
    Sandler SJ; Chackerian B; Li JT; Clark AJ
    Nucleic Acids Res; 1992 Feb; 20(4):839-45. PubMed ID: 1542576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of diacylglycerol kinase alpha by phosphoinositide 3-kinase lipid products.
    Ciprés A; Carrasco S; Merino E; Díaz E; Krishna UM; Falck JR; Martínez-A C; Mérida I
    J Biol Chem; 2003 Sep; 278(37):35629-35. PubMed ID: 12832407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstitutive refolding of diacylglycerol kinase, an integral membrane protein.
    Gorzelle BM; Nagy JK; Oxenoid K; Lonzer WL; Cafiso DS; Sanders CR
    Biochemistry; 1999 Dec; 38(49):16373-82. PubMed ID: 10587463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of extracytoplasmic function sigma factors in Bacillus subtilis cells with defects in lipoteichoic acid synthesis.
    Hashimoto M; Seki T; Matsuoka S; Hara H; Asai K; Sadaie Y; Matsumoto K
    Microbiology (Reading); 2013 Jan; 159(Pt 1):23-35. PubMed ID: 23103977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis.
    Richter G; Fischer M; Krieger C; Eberhardt S; Lüttgen H; Gerstenschläger I; Bacher A
    J Bacteriol; 1997 Mar; 179(6):2022-8. PubMed ID: 9068650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.