BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 17535962)

  • 1. Aspartate-444 is essential for productive substrate interactions in a neuronal glutamate transporter.
    Teichman S; Kanner BI
    J Gen Physiol; 2007 Jun; 129(6):527-39. PubMed ID: 17535962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation of the conserved aspartate 439 and bound amino acid substrate is important for high-affinity Na+ binding to the glutamate transporter EAAC1.
    Tao Z; Grewer C
    J Gen Physiol; 2007 Apr; 129(4):331-44. PubMed ID: 17389249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.
    Teichman S; Qu S; Kanner BI
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14297-302. PubMed ID: 19706515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance.
    Shachnai L; Shimamoto K; Kanner BI
    Neuropharmacology; 2005 Nov; 49(6):862-71. PubMed ID: 16137722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple consequences of mutating two conserved beta-bridge forming residues in the translocation cycle of a neuronal glutamate transporter.
    Rosental N; Bendahan A; Kanner BI
    J Biol Chem; 2006 Sep; 281(38):27905-15. PubMed ID: 16870620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters.
    Rosental N; Gameiro A; Grewer C; Kanner BI
    J Biol Chem; 2011 Dec; 286(48):41381-41390. PubMed ID: 21984827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel dicarboxylate selectivity in an insect glutamate transporter homolog.
    Wang H; Rascoe AM; Holley DC; Gouaux E; Kavanaugh MP
    PLoS One; 2013; 8(8):e70947. PubMed ID: 23951049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutralizing aspartate 83 modifies substrate translocation of excitatory amino acid transporter 3 (EAAT3) glutamate transporters.
    Hotzy J; Machtens JP; Fahlke C
    J Biol Chem; 2012 Jun; 287(24):20016-26. PubMed ID: 22532568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutralization of the aspartic acid residue Asp-367, but not Asp-454, inhibits binding of Na+ to the glutamate-free form and cycling of the glutamate transporter EAAC1.
    Tao Z; Zhang Z; Grewer C
    J Biol Chem; 2006 Apr; 281(15):10263-72. PubMed ID: 16478724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The substrate specificity of a neuronal glutamate transporter is determined by the nature of the coupling ion.
    Menaker D; Bendahan A; Kanner BI
    J Neurochem; 2006 Oct; 99(1):20-8. PubMed ID: 16831195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1.
    Griffith DA; Pajor AM
    Biochemistry; 1999 Jun; 38(23):7524-31. PubMed ID: 10360950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Excitatory Amino Acid Transporters 1 - 3 (EAAT1, EAAT2, EAAT3) with N-Carbamoylglutamate and N-Acetylglutamate.
    Burckhardt BC; Burckhardt G
    Cell Physiol Biochem; 2017; 43(5):1907-1916. PubMed ID: 29055942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter.
    Teichman S; Qu S; Kanner BI
    J Biol Chem; 2012 May; 287(21):17198-17205. PubMed ID: 22493292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and molecular identification of sodium-coupled dicarboxylate transporters in rat primary cultured cerebrocortical astrocytes and neurons.
    Yodoya E; Wada M; Shimada A; Katsukawa H; Okada N; Yamamoto A; Ganapathy V; Fujita T
    J Neurochem; 2006 Apr; 97(1):162-73. PubMed ID: 16524379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide cross-linking of transport and trimerization domains of a neuronal glutamate transporter restricts the role of the substrate to the gating of the anion conductance.
    Shabaneh M; Rosental N; Kanner BI
    J Biol Chem; 2014 Apr; 289(16):11175-11182. PubMed ID: 24584931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.
    Tanui R; Tao Z; Silverstein N; Kanner B; Grewer C
    J Biol Chem; 2016 May; 291(22):11852-64. PubMed ID: 27044739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members.
    Scopelliti AJ; Ryan RM; Vandenberg RJ
    J Biol Chem; 2013 Mar; 288(12):8250-8257. PubMed ID: 23393130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter.
    Rosental N; Kanner BI
    J Biol Chem; 2010 Jul; 285(28):21241-8. PubMed ID: 20424168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.