These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 17536167)
1. The role of stress proteins in responses of a montane willow leaf beetle to environmental temperature variation. Dahlhoff EP; Rank NE J Biosci; 2007 Apr; 32(3):477-88. PubMed ID: 17536167 [TBL] [Abstract][Full Text] [Related]
2. Phosphoglucose isomerase genotype affects running speed and heat shock protein expression after exposure to extreme temperatures in a montane willow beetle. Rank NE; Bruce DA; McMillan DM; Barclay C; Dahlhoff EP J Exp Biol; 2007 Mar; 210(Pt 5):750-64. PubMed ID: 17297136 [TBL] [Abstract][Full Text] [Related]
3. Effects of temperature on physiology and reproductive success of a montane leaf beetle: implications for persistence of native populations enduring climate change. Dahlhoff EP; Fearnley SL; Bruce DA; Gibbs AG; Stoneking R; McMillan DM; Deiner K; Smiley JT; Rank NE Physiol Biochem Zool; 2008; 81(6):718-32. PubMed ID: 18956974 [TBL] [Abstract][Full Text] [Related]
4. Allele frequency shifts in response to climate change and physiological consequences of allozyme variation in a montane insect. Rank NE; Dahlhoff EP Evolution; 2002 Nov; 56(11):2278-89. PubMed ID: 12487357 [TBL] [Abstract][Full Text] [Related]
5. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: heat shock protein expression is related to enzyme genotype in a montane beetle. Dahlhoff EP; Rank NE Proc Natl Acad Sci U S A; 2000 Aug; 97(18):10056-61. PubMed ID: 10944188 [TBL] [Abstract][Full Text] [Related]
6. Effects of temperature variation on male behavior and mating success in a montane beetle. Dick CA; Rank NE; McCarthy M; McWeeney S; Hollis D; Dahlhoff EP Physiol Biochem Zool; 2013; 86(4):432-40. PubMed ID: 23799837 [TBL] [Abstract][Full Text] [Related]
7. Mitonuclear mismatch alters performance and reproductive success in naturally introgressed populations of a montane leaf beetle. Rank NE; Mardulyn P; Heidl SJ; Roberts KT; Zavala NA; Smiley JT; Dahlhoff EP Evolution; 2020 Aug; 74(8):1724-1740. PubMed ID: 32246837 [TBL] [Abstract][Full Text] [Related]
8. A HIERARCHICAL ANALYSIS OF GENETIC DIFFERENTIATION IN A MONTANE LEAF BEETLE CHRYSOMELA AENEICOLLIS (COLEOPTERA: CHRYSOMELIDAE). Rank NE Evolution; 1992 Aug; 46(4):1097-1111. PubMed ID: 28564415 [TBL] [Abstract][Full Text] [Related]
9. Multi-locus genomic signatures of local adaptation to snow across the landscape in California populations of a willow leaf beetle. Keller AG; Dahlhoff EP; Bracewell R; Chatla K; Bachtrog D; Rank NE; Williams CM Proc Biol Sci; 2023 Aug; 290(2005):20230630. PubMed ID: 37583321 [TBL] [Abstract][Full Text] [Related]
10. Natural variation in resistance to desiccation and heat shock protein expression in the land snail Theba pisana along a climatic gradient. Mizrahi T; Goldenberg S; Heller J; Arad Z Physiol Biochem Zool; 2015; 88(1):66-80. PubMed ID: 25590594 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide identification and expression analysis of the Hsp gene superfamily in Asian long-horned beetle (Anoplophora glabripennis). Xu Y; Shi F; Li Y; Zong S; Tao J Int J Biol Macromol; 2022 Mar; 200():583-592. PubMed ID: 35016971 [TBL] [Abstract][Full Text] [Related]
12. Cloning and expression pattern of heat shock protein genes from the endoparasitoid wasp, Pteromalus puparum in response to environmental stresses. Wang H; Li K; Zhu JY; Fang Q; Ye GY; Wang H; Li K; Zhu JY Arch Insect Biochem Physiol; 2012 Apr; 79(4-5):247-63. PubMed ID: 22517445 [TBL] [Abstract][Full Text] [Related]
13. Cloning and expression analysis of four heat shock protein genes in Ericerus pela (Homoptera: Coccidae). Liu WW; Yang P; Chen XM; Xu DL; Hu YH J Insect Sci; 2014; 14():. PubMed ID: 25826465 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Multiple Heat-Shock Protein Transcripts from Cydia pomonella: Their Response to Extreme Temperature and Insecticide Exposure. Yang XQ; Zhang YL; Wang XQ; Dong H; Gao P; Jia LY J Agric Food Chem; 2016 Jun; 64(21):4288-98. PubMed ID: 27159229 [TBL] [Abstract][Full Text] [Related]
15. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana. Cheng W; Li D; Wang Y; Liu Y; Zhu-Salzman K J Insect Physiol; 2016 Dec; 95():66-77. PubMed ID: 27639943 [TBL] [Abstract][Full Text] [Related]
16. Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Rhee JS; Raisuddin S; Lee KW; Seo JS; Ki JS; Kim IC; Park HG; Lee JS Comp Biochem Physiol C Toxicol Pharmacol; 2009 Jan; 149(1):104-12. PubMed ID: 18722552 [TBL] [Abstract][Full Text] [Related]
17. Expression of Heat Shock Protein Genes in Different Developmental Stages and After Temperature Stress in the Maize Weevil (Coleoptera: Curculionidae). Tungjitwitayakul J; Tatun N; Vajarasathira B; Sakurai S J Econ Entomol; 2015 Jun; 108(3):1313-23. PubMed ID: 26470260 [TBL] [Abstract][Full Text] [Related]
18. Induction of Heat Shock Protein Genes is the Hallmark of Egg Heat Tolerance in Agasicles hygrophila (Coleoptera: Chrysomelidae). Jia D; Liu YH; Zhang B; Ji ZY; Wang YX; Gao LL; Ma RY J Econ Entomol; 2020 Aug; 113(4):1972-1981. PubMed ID: 32449773 [TBL] [Abstract][Full Text] [Related]
19. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. Padmini E Rev Environ Contam Toxicol; 2010; 206():1-27. PubMed ID: 20652666 [TBL] [Abstract][Full Text] [Related]
20. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. Fangue NA; Hofmeister M; Schulte PM J Exp Biol; 2006 Aug; 209(Pt 15):2859-72. PubMed ID: 16857869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]