These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17536719)

  • 1. Effects of river otter activity on terrestrial plants in trophically altered Yellowstone Lake.
    Crait JR; Ben-David M
    Ecology; 2007 Apr; 88(4):1040-52. PubMed ID: 17536719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of changing prey availability on the prevalence of Diphyllobothrium in river otters from Yellowstone National Park.
    Crait JR; McIntosh AD; Greiner EC; Ben-David M
    J Parasitol; 2015 Apr; 101(2):240-3. PubMed ID: 25192057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trophic interactions of the endangered Southern river otter (Lontra provocax) in a Chilean Ramsar wetland inferred from prey sampling, fecal analysis, and stable isotopes.
    Franco M; Guevara G; Correa L; Soto-Gamboa M
    Naturwissenschaften; 2013 Apr; 100(4):299-310. PubMed ID: 23467968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Behavior by Coastal River Otter (Lontra Canadensis) in Response to Prey Availability in Prince William Sound, Alaska: A Spatially-Explicit Individual-Based Approach.
    Albeke SE; Nibbelink NP; Ben-David M
    PLoS One; 2015; 10(6):e0126208. PubMed ID: 26061497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential tree and shrub production in response to fertilization and disturbance by coastal river otters in Alaska.
    Roe AM; Meyer CB; Nibbelink NP; Ben-David M
    Ecology; 2010 Nov; 91(11):3177-88. PubMed ID: 21141179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density of river otters (Lontra canadensis) in relation to energy development in the Green River Basin, Wyoming.
    Godwin BL; Albeke SE; Bergman HL; Walters A; Ben-David M
    Sci Total Environ; 2015 Nov; 532():780-90. PubMed ID: 26125409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bald eagles and sea otters in the Aleutian Archipelago: indirect effects of trophic cascades.
    Anthony RG; Estes JA; Ricca MA; Miles AK; Forsman ED
    Ecology; 2008 Oct; 89(10):2725-35. PubMed ID: 18959310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Source and sink dynamics of density-dependent otter (Lutra lutra) populations in rivers of central Finland.
    Sulkava RT; Sulkava PO; Sulkava PE
    Oecologia; 2007 Sep; 153(3):579-88. PubMed ID: 17566780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vicuña antipredator diel movement drives spatial nutrient subsidies in a high Andean ecosystem.
    Monk JD; Donadio E; Gregorio PF; Schmitz OJ
    Ecology; 2024 Mar; 105(3):e4262. PubMed ID: 38351587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development and use of a spatially explicit model for river otters to evaluate environmental hazards: a case study on the Department of Energy's Savannah River Site.
    McCallen EB; Gaines KF; Novak JM; Ruyle LE; Stephens WL; Lawrence Bryan A; Blas SA; Serfass TL
    Environ Monit Assess; 2018 Jun; 190(7):374. PubMed ID: 29860567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecosystem features determine seagrass community response to sea otter foraging.
    Hessing-Lewis M; Rechsteiner EU; Hughes BB; Tim Tinker M; Monteith ZL; Olson AM; Henderson MM; Watson JC
    Mar Pollut Bull; 2018 Sep; 134():134-144. PubMed ID: 29221592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.
    Meunier CL; Gundale MJ; Sánchez IS; Liess A
    Glob Chang Biol; 2016 Jan; 22(1):164-79. PubMed ID: 25953197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Latrine site selection by African clawless otters,
    Nicolaides SG; Mostert THC; McIntyre T
    J Mammal; 2024 Feb; 105(1):107-121. PubMed ID: 38314440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude diving in river otters: coping with combined hypoxic stresses.
    Crait JR; Prange HD; Marshall NA; Harlow HJ; Cotton CJ; Ben-David M
    J Exp Biol; 2012 Jan; 215(Pt 2):256-63. PubMed ID: 22189769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STRESS LEVELS IN CAPTURED RIVER OTTERS (LONTRA CANADENSIS) DECREASED AFTER TRANSPORTATION TO REINTRODUCTION SITES.
    Taylor RT; Wong JA; Serfass TL
    J Zoo Wildl Med; 2016 Dec; 47(4):1057-1060. PubMed ID: 28080903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in Neotropical river otter (Lontra longicaudis) diet: Effects of an invasive prey species.
    Juarez-Sanchez D; Blake JG; Hellgren EC
    PLoS One; 2019; 14(10):e0217727. PubMed ID: 31581191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the extent of sea otter impacts on bivalve prey through multi-trophic monitoring and mechanistic models.
    Leach CB; Weitzman BP; Bodkin JL; Esler D; Esslinger GG; Kloecker KA; Monson DH; Womble JN; Hooten MB
    J Anim Ecol; 2023 Jun; 92(6):1230-1243. PubMed ID: 37081640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scale-dependent analysis of an otter-crustacean system in Argentinean Patagonia.
    Cassini MH; Fasola L; Chehébar C; Macdonald DW
    Naturwissenschaften; 2009 May; 96(5):593-9. PubMed ID: 19225749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale predation by river otters (Lontra canadensis) on Florida cooter (Pseudemys floridana) and Florida softshell turtles (Apalone ferox).
    Stacy BA; Wolf DA; Wellehan JF
    J Wildl Dis; 2014 Oct; 50(4):906-10. PubMed ID: 25098299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. River otters (Lontra canadensis) "trapped" in a coastal environment contaminated with persistent organic pollutants: Demographic and physiological consequences.
    Huang AC; Nelson C; Elliott JE; Guertin DA; Ritland C; Drouillard K; Cheng KM; Schwantje HM
    Environ Pollut; 2018 Jul; 238():306-316. PubMed ID: 29573713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.