BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 17536780)

  • 1. Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase.
    Kovacs JA; Brines LM
    Acc Chem Res; 2007 Jul; 40(7):501-9. PubMed ID: 17536780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite.
    Villar-Acevedo G; Nam E; Fitch S; Benedict J; Freudenthal J; Kaminsky W; Kovacs JA
    J Am Chem Soc; 2011 Feb; 133(5):1419-27. PubMed ID: 21207999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.
    Dey A; Jenney FE; Adams MW; Johnson MK; Hodgson KO; Hedman B; Solomon EI
    J Am Chem Soc; 2007 Oct; 129(41):12418-31. PubMed ID: 17887751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional model for the cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR).
    Kitagawa T; Dey A; Lugo-Mas P; Benedict JB; Kaminsky W; Solomon E; Kovacs JA
    J Am Chem Soc; 2006 Nov; 128(45):14448-9. PubMed ID: 17090014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
    Namuswe F; Kasper GD; Sarjeant AA; Hayashi T; Krest CM; Green MT; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2008 Oct; 130(43):14189-200. PubMed ID: 18837497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of the non-heme iron active site in superoxide reductase and its reaction with superoxide.
    Silaghi-Dumitrescu R; Silaghi-Dumitrescu I; Coulter ED; Kurtz DM
    Inorg Chem; 2003 Jan; 42(2):446-56. PubMed ID: 12693226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic models of the reduced active site of superoxide reductase.
    Halfen JA; Moore HL; Fox DC
    Inorg Chem; 2002 Jul; 41(15):3935-43. PubMed ID: 12132918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide Oxidation by a Thiolate-Ligated Iron Complex and Anion Inhibition.
    Dedushko MA; Pikul JH; Kovacs JA
    Inorg Chem; 2021 May; 60(10):7250-7261. PubMed ID: 33900756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the nitrogen donors on nonheme iron models of superoxide reductase: high-spin Fe(III)-OOR complexes.
    Namuswe F; Hayashi T; Jiang Y; Kasper GD; Sarjeant AA; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2010 Jan; 132(1):157-67. PubMed ID: 20000711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur oxygenation in biomimetic non-heme iron-thiolate complexes.
    McQuilken AC; Goldberg DP
    Dalton Trans; 2012 Aug; 41(36):10883-99. PubMed ID: 22814765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic models for the cysteinate-ligated non-heme iron enzyme superoxide reductase: observation and structural characterization by XAS of an Fe(III)-OOH intermediate.
    Shearer J; Scarrow RC; Kovacs JA
    J Am Chem Soc; 2002 Oct; 124(39):11709-17. PubMed ID: 12296737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme.
    Katona G; Carpentier P; Nivière V; Amara P; Adam V; Ohana J; Tsanov N; Bourgeois D
    Science; 2007 Apr; 316(5823):449-53. PubMed ID: 17446401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometries and electronic structures of cyanide adducts of the non-heme iron active site of superoxide reductases: vibrational and ENDOR studies.
    Clay MD; Yang TC; Jenney FE; Kung IY; Cosper CA; Krishnan R; Kurtz DM; Adams MW; Hoffman BM; Johnson MK
    Biochemistry; 2006 Jan; 45(2):427-38. PubMed ID: 16401073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic analogues of cysteinate-ligated non-heme iron and non-corrinoid cobalt enzymes.
    Kovacs JA
    Chem Rev; 2004 Feb; 104(2):825-48. PubMed ID: 14871143
    [No Abstract]   [Full Text] [Related]  

  • 19. Structural and spectroscopic characterization of metastable thiolate-ligated manganese(III)-alkylperoxo species.
    Coggins MK; Kovacs JA
    J Am Chem Soc; 2011 Aug; 133(32):12470-3. PubMed ID: 21776951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the syn disposition of nitrogen donors in non-heme diiron enzymes. Synthesis, characterization, and hydrogen peroxide reactivity of diiron(III) complexes with the syn N-donor ligand H2BPG2DEV.
    Friedle S; Kodanko JJ; Morys AJ; Hayashi T; Moënne-Loccoz P; Lippard SJ
    J Am Chem Soc; 2009 Oct; 131(40):14508-20. PubMed ID: 19757795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.