These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
536 related articles for article (PubMed ID: 17536826)
1. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826 [TBL] [Abstract][Full Text] [Related]
2. Recombinant expression and characterization of the Candida rugosa lip4 lipase in Pichia pastoris: comparison of glycosylation, activity, and stability. Tang SJ; Shaw JF; Sun KH; Sun GH; Chang TY; Lin CK; Lo YC; Lee GC Arch Biochem Biophys; 2001 Mar; 387(1):93-8. PubMed ID: 11368188 [TBL] [Abstract][Full Text] [Related]
3. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Lee GC; Lee LC; Sava V; Shaw JF Biochem J; 2002 Sep; 366(Pt 2):603-11. PubMed ID: 12020350 [TBL] [Abstract][Full Text] [Related]
4. Recombinant expression of the Candida rugosa lip4 lipase in Escherichia coli. Tang SJ; Sun KH; Sun GH; Chang TY; Lee GC Protein Expr Purif; 2000 Nov; 20(2):308-13. PubMed ID: 11049754 [TBL] [Abstract][Full Text] [Related]
5. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
6. Site-specific saturation mutagenesis on residues 132 and 450 of Candida rugosa LIP2 enhances catalytic efficiency and alters substrate specificity in various chain lengths of triglycerides and esters. Yen CC; Malmis CC; Lee GC; Lee LC; Shaw JF J Agric Food Chem; 2010 Oct; 58(20):10899-905. PubMed ID: 20873770 [TBL] [Abstract][Full Text] [Related]
7. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Feb; 54(3):815-22. PubMed ID: 16448188 [TBL] [Abstract][Full Text] [Related]
8. C-terminal region of Candida rugosa lipases affects enzyme activity and interfacial activation. Hung KS; Chen SY; Liu HF; Tsai BR; Chen HW; Huang CY; Liao JL; Sun KH; Tang SJ J Agric Food Chem; 2011 May; 59(10):5396-401. PubMed ID: 21504227 [TBL] [Abstract][Full Text] [Related]
9. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684 [TBL] [Abstract][Full Text] [Related]
10. Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris. Chang SW; Shieh CJ; Lee GC; Shaw JF Appl Microbiol Biotechnol; 2005 Apr; 67(2):215-24. PubMed ID: 15592826 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes. Chang SW; Huang M; Hsieh YH; Luo YT; Wu TT; Tsai CW; Chen CS; Shaw JF Food Chem; 2014 Jul; 155():140-5. PubMed ID: 24594166 [TBL] [Abstract][Full Text] [Related]
12. Engineering the expression and biochemical characteristics of recombinant Candida rugosa LIP2 lipase by removing the additional N-terminal peptide and regional codon optimization. Chang SW; Li CF; Lee GC; Yeh T; Shaw JF J Agric Food Chem; 2011 Jun; 59(12):6710-9. PubMed ID: 21561168 [TBL] [Abstract][Full Text] [Related]
13. Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Xu L; Jiang X; Yang J; Liu Y; Yan Y Biotechnol Lett; 2010 Feb; 32(2):269-76. PubMed ID: 19841868 [TBL] [Abstract][Full Text] [Related]
14. [Heterologous expression and characterization of Yarrowia lipolytica lipase 4 and lipase 5 in Pichia pastoris]. Zhao H; Xiao X; Xu L; Liu Y; Yan Y Wei Sheng Wu Xue Bao; 2011 Oct; 51(10):1374-81. PubMed ID: 22233059 [TBL] [Abstract][Full Text] [Related]
15. Molecular cloning and functional expression of a novel extracellular lipase from the thermotolerant yeast Candida thermophila. Thongekkaew J; Boonchird C FEMS Yeast Res; 2007 Mar; 7(2):232-43. PubMed ID: 17266732 [TBL] [Abstract][Full Text] [Related]
16. Characterization of codon-optimized recombinant candida rugosa lipase 5 (LIP5). Lee LC; Yen CC; Malmis CC; Chen LF; Chen JC; Lee GC; Shaw JF J Agric Food Chem; 2011 Oct; 59(19):10693-8. PubMed ID: 21854055 [TBL] [Abstract][Full Text] [Related]
17. Isolation and characterization of novel long-chain acyl-CoA thioesterase/carboxylesterase isoenzymes from Candida rugosa. Diczfalusy MA; Alexson SE Arch Biochem Biophys; 1996 Oct; 334(1):104-12. PubMed ID: 8837745 [TBL] [Abstract][Full Text] [Related]
18. [High expression of LIP1 in Pichia pastoris]. Bei JL; Wang JW; Wang XZ; Long QX; Yang L; Deng YY Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Apr; 35(4):366-70. PubMed ID: 12673392 [TBL] [Abstract][Full Text] [Related]
19. Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Brocca S; Persson M; Wehtje E; Adlercreutz P; Alberghina L; Lotti M Protein Sci; 2000 May; 9(5):985-90. PubMed ID: 10850808 [TBL] [Abstract][Full Text] [Related]
20. Recombinant Candida rugosa lipase 2 from Pichia pastoris: immobilization and use as biocatalyst in a stereoselective reaction. Benaiges MD; Alarcón M; Fuciños P; Ferrer P; Rua M; Valero F Biotechnol Prog; 2010; 26(5):1252-8. PubMed ID: 20945483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]