BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17537439)

  • 1. Paradox of epithelial cell calcium homeostasis during vectorial transfer in crayfish kidney.
    Wheatly MG; Gao Y; Gillen CM
    Gen Comp Endocrinol; 2007; 152(2-3):267-72. PubMed ID: 17537439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and characterization of a calmodulin gene (CaM) in crayfish Procambarus clarkii and expression during molting.
    Gao Y; Gillen CM; Wheatly MG
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Mar; 152(3):216-25. PubMed ID: 19095075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of NCX and PMCA in basolateral calcium export associated with mineralization cycles and cold acclimation in crayfish.
    Wheatly MG; Gao Y; Stiner LM; Whalen DR; Nade M; Vigo F; Golshani AE
    Ann N Y Acad Sci; 2007 Mar; 1099():190-2. PubMed ID: 17446457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of an epithelial Ca2+ channel-like gene from crayfish Procambarus clarkii.
    Gao Y; Wheatly MG
    J Exp Biol; 2007 May; 210(Pt 10):1813-24. PubMed ID: 17488945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium regulation in crustaceans during the molt cycle: a review and update.
    Ahearn GA; Mandal PK; Mandal A
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb; 137(2):247-57. PubMed ID: 15123199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of the sarcoplasmic calcium-binding protein (SCP) from crayfish Procambarus clarkii.
    Gao Y; Gillen CM; Wheatly MG
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Aug; 144(4):478-87. PubMed ID: 16807031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and expression of plasma membrane Ca2+ ATPase (PMCA3) in the crayfish Procambarus clarkii antennal gland during molting.
    Gao Y; Wheatly MG
    J Exp Biol; 2004 Aug; 207(Pt 17):2991-3002. PubMed ID: 15277554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanisms of calcium homeostasis and signalling in the lens.
    Rhodes JD; Sanderson J
    Exp Eye Res; 2009 Feb; 88(2):226-34. PubMed ID: 19061888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characterization of the Na(+)/Ca(2+) exchanger (NCX) in hepatopancreatic and antennal gland basolateral membrane vesicles isolated from the freshwater crayfish Procambarus clarkii.
    Wheatly MG; Hubbard MG; Corbett AM
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Feb; 131(2):343-61. PubMed ID: 11818224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium homeostasis in crustaceans: subcellular Ca dynamics.
    Wheatly MG; Zanotto FP; Hubbard MG
    Comp Biochem Physiol B Biochem Mol Biol; 2002 May; 132(1):163-78. PubMed ID: 11997219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of sarcoplasmic calcium binding protein (SCP) variants from freshwater crayfish Procambarus clarkii.
    White AJ; Northcutt MJ; Rohrback SE; Carpenter RO; Niehaus-Sauter MM; Gao Y; Wheatly MG; Gillen CM
    Comp Biochem Physiol B Biochem Mol Biol; 2011 Sep; 160(1):8-14. PubMed ID: 21530674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel subcellular and molecular tools to study Ca(2+) transport mechanisms during the elusive moulting stages of crustaceans: flow cytometry and polyclonal antibodies.
    Wheatly M; Zhang Z; Weil J; Rogers J; Stiner L
    J Exp Biol; 2001 Mar; 204(Pt 5):959-66. PubMed ID: 11171419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypertension and renal calcium transport.
    Petrazzuolo O; Trepiccione F; Zacchia M; Capasso G
    J Nephrol; 2010; 23 Suppl 16():S112-7. PubMed ID: 21170867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allometric relationship of postmolt net ion uptake, ventilation, and circulation in the freshwater crayfish Procambarus clarkii: intraspecific scaling.
    Zanotto FP; Wheatly MG; Reiber CL; Gannon AT; Jalles-Filho E
    Physiol Biochem Zool; 2004; 77(2):275-84. PubMed ID: 15095247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium transport in strongly calcifying laying birds: mechanisms and regulation.
    Bar A
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):447-69. PubMed ID: 19118637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elongation factor 1Bgamma (eEF1Bgamma) expression during the molting cycle and cold acclimation in the crayfish Procambarus clarkii.
    Gillen CM; Gao Y; Niehaus-Sauter MM; Wylde MR; Wheatly MG
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Jun; 150(2):170-6. PubMed ID: 18407536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium homeostasis in crustacea: the evolving role of branchial, renal, digestive and hypodermal epithelia.
    Wheatly MG
    J Exp Zool; 1999 Jun; 283(7):620-40. PubMed ID: 10222589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport.
    Lambers TT; Mahieu F; Oancea E; Hoofd L; de Lange F; Mensenkamp AR; Voets T; Nilius B; Clapham DE; Hoenderop JG; Bindels RJ
    EMBO J; 2006 Jul; 25(13):2978-88. PubMed ID: 16763551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of regucalcin in maintaining cell homeostasis and function (review).
    Yamaguchi M
    Int J Mol Med; 2005 Mar; 15(3):371-89. PubMed ID: 15702226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ER and ageing II: calcium homeostasis.
    Puzianowska-Kuznicka M; Kuznicki J
    Ageing Res Rev; 2009 Jul; 8(3):160-72. PubMed ID: 19427411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.