These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 17537480)
41. Chemical mass balance source apportionment of PM10 and TSP in residential and industrial sites of an urban region of Kolkata, India. Gupta AK; Karar K; Srivastava A J Hazard Mater; 2007 Apr; 142(1-2):279-87. PubMed ID: 16987605 [TBL] [Abstract][Full Text] [Related]
42. Exploration of the composition and sources of urban fine particulate matter associated with same-day cardiovascular health effects in Dearborn, Michigan. Morishita M; Bard RL; Kaciroti N; Fitzner CA; Dvonch T; Harkema JR; Rajagopalan S; Brook RD J Expo Sci Environ Epidemiol; 2015; 25(2):145-52. PubMed ID: 24866265 [TBL] [Abstract][Full Text] [Related]
43. Air quality status in Greater Thessaloniki Area and the emission reductions needed for attaining the EU air quality legislation. Moussiopoulos N; Vlachokostas Ch; Tsilingiridis G; Douros I; Hourdakis E; Naneris C; Sidiropoulos C Sci Total Environ; 2009 Feb; 407(4):1268-85. PubMed ID: 19028397 [TBL] [Abstract][Full Text] [Related]
44. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Richmond-Bryant J; Saganich C; Bukiewicz L; Kalin R Sci Total Environ; 2009 May; 407(10):3357-64. PubMed ID: 19250655 [TBL] [Abstract][Full Text] [Related]
45. An overview of the PM10 pollution problem, in the Metropolitan Area of Athens, Greece. Assessment of controlling factors and potential impact of long range transport. Grivas G; Chaloulakou A; Kassomenos P Sci Total Environ; 2008 Jan; 389(1):165-77. PubMed ID: 17900663 [TBL] [Abstract][Full Text] [Related]
46. Using a source-receptor approach to characterise VOC behaviour in a French urban area influenced by industrial emissions. Part II: source contribution assessment using the Chemical Mass Balance (CMB) model. Badol C; Locoge N; Galloo JC Sci Total Environ; 2008 Jan; 389(2-3):429-40. PubMed ID: 17936336 [TBL] [Abstract][Full Text] [Related]
47. Comparison of lead isotopes with source apportionment models, including SOM, for air particulates. Gulson B; Korsch M; Dickson B; Cohen D; Mizon K; Davis JM Sci Total Environ; 2007 Aug; 381(1-3):169-79. PubMed ID: 17475309 [TBL] [Abstract][Full Text] [Related]
48. Source apportionment of PM₁₀ and PM₂.₅ in a desert region in northern Chile. Jorquera H; Barraza F Sci Total Environ; 2013 Feb; 444():327-35. PubMed ID: 23280290 [TBL] [Abstract][Full Text] [Related]
49. Application of an ensemble-trained source apportionment approach at a site impacted by multiple point sources. Maier ML; Balachandran S; Sarnat SE; Turner JR; Mulholland JA; Russell AG Environ Sci Technol; 2013 Apr; 47(8):3743-51. PubMed ID: 23441641 [TBL] [Abstract][Full Text] [Related]
50. Source apportionment of PM₂.₅ at the coastal area in Korea. Choi JK; Heo JB; Ban SJ; Yi SM; Zoh KD Sci Total Environ; 2013 Mar; 447():370-80. PubMed ID: 23410858 [TBL] [Abstract][Full Text] [Related]
51. Sources identification of the atmospheric aerosol at urban and suburban sites in Indonesia by positive matrix factorization. Santoso M; Hopke PK; Hidayat A; Diah Dwiana L Sci Total Environ; 2008 Jul; 397(1-3):229-37. PubMed ID: 18440600 [TBL] [Abstract][Full Text] [Related]
52. Concentrations of particulate matter and arsenic in Bor (Serbia). Serbula SM; Antonijević MM; Milosević NM; Milić SM; Ilić AA J Hazard Mater; 2010 Sep; 181(1-3):43-51. PubMed ID: 20510514 [TBL] [Abstract][Full Text] [Related]
53. Air pollution combustion emissions: characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Lewtas J Mutat Res; 2007; 636(1-3):95-133. PubMed ID: 17951105 [TBL] [Abstract][Full Text] [Related]
54. Understanding the sources and composition of the incremental excess of fine particles across multiple sampling locations in one air shed. McGinnis JE; Heo J; Olson MR; Rutter AP; Schauer JJ J Environ Sci (China); 2014 Apr; 26(4):818-26. PubMed ID: 25079412 [TBL] [Abstract][Full Text] [Related]
55. Assessment of population exposure to particulate matter pollution in Chongqing, China. Wang S; Zhao Y; Chen G; Wang F; Aunan K; Hao J Environ Pollut; 2008 May; 153(1):247-56. PubMed ID: 17868962 [TBL] [Abstract][Full Text] [Related]
56. Comparison of receptor models for source apportionment of the PM10 in Zaragoza (Spain). Callén MS; de la Cruz MT; López JM; Navarro MV; Mastral AM Chemosphere; 2009 Aug; 76(8):1120-9. PubMed ID: 19443015 [TBL] [Abstract][Full Text] [Related]
57. Spatiotemporal aspects of real-time PM(2.5): low- and middle-income neighborhoods in Bangalore, India. Both AF; Balakrishnan A; Joseph B; Marshall JD Environ Sci Technol; 2011 Jul; 45(13):5629-36. PubMed ID: 21671645 [TBL] [Abstract][Full Text] [Related]
58. Urban particulate matter pollution: a tale of five cities. Pandis SN; Skyllakou K; Florou K; Kostenidou E; Kaltsonoudis C; Hasa E; Presto AA Faraday Discuss; 2016 Jul; 189():277-90. PubMed ID: 27310460 [TBL] [Abstract][Full Text] [Related]
59. Comparison of source apportionments of fine particulate matter at two San Jose speciation trends network sites. Hwang I; Hopke PK J Air Waste Manag Assoc; 2006 Sep; 56(9):1287-300. PubMed ID: 17004684 [TBL] [Abstract][Full Text] [Related]
60. A statistical assessment of saturation and mobile sampling strategies to estimate long-term average concentrations across urban areas. Xu X; Brook JR; Guo Y J Air Waste Manag Assoc; 2007 Nov; 57(11):1396-406. PubMed ID: 18069463 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]