These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17537572)

  • 1. Wet electrolytic oxidation of organic sludge.
    Serikawa RM
    J Hazard Mater; 2007 Jul; 146(3):646-51. PubMed ID: 17537572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcritical wet oxidation of municipal sewage sludge: comparison of batch and continuous experiments.
    Lendormi T; Prevot C; Doppenbe F; Foussard JN; Debellefontaine H
    Water Sci Technol; 2001; 44(5):161-9. PubMed ID: 11695455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet oxidation of domestic sludge and process integration: the Mineralis process.
    Lendormi T; Prévot C; Doppenberg F; Spérandio M; Debellefontaine H
    Water Sci Technol; 2001; 44(10):163-9. PubMed ID: 11794648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.
    Chung J; Lee M; Ahn J; Bae W; Lee YW; Shim H
    J Hazard Mater; 2009 Feb; 162(1):10-6. PubMed ID: 18579292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge.
    Mucha J; Zarzycki R
    Water Res; 2008 Jun; 42(12):3025-32. PubMed ID: 18472124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of saline water and sludge addition on biodegradation of municipal solid waste in bioreactor landfills.
    Alkaabi S; Van Geel PJ; Warith MA
    Waste Manag Res; 2009 Feb; 27(1):59-69. PubMed ID: 19220994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment.
    Yoshida H; Tokumoto H; Ishii K; Ishii R
    Bioresour Technol; 2009 Jun; 100(12):2933-9. PubMed ID: 19254834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation of oily sludge in supercritical water.
    Cui B; Cui F; Jing G; Xu S; Huo W; Liu S
    J Hazard Mater; 2009 Jun; 165(1-3):511-7. PubMed ID: 19019533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-order hydrothermal oxidation kinetics of digested sludge compared with raw sludge.
    Shanableh A; Imteaz M
    Environ Technol; 2008 Sep; 29(9):1009-20. PubMed ID: 18844128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving alachlor biodegradability by ferrate oxidation.
    Zhu JH; Yan XL; Liu Y; Zhang B
    J Hazard Mater; 2006 Jul; 135(1-3):94-9. PubMed ID: 16343762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55 degrees C) of sewage sludge: influence of pH and solid content.
    Ponsá S; Ferrer I; Vázquez F; Font X
    Water Res; 2008 Aug; 42(14):3972-80. PubMed ID: 18687452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition.
    Derbal K; Bencheikh-Lehocine M; Cecchi F; Meniai AH; Pavan P
    Bioresour Technol; 2009 Feb; 100(4):1539-43. PubMed ID: 18954973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge.
    Nakashimada Y; Ohshima Y; Minami H; Yabu H; Namba Y; Nishio N
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):1061-9. PubMed ID: 18491038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater.
    Somasiri W; Li XF; Ruan WQ; Jian C
    Bioresour Technol; 2008 Jun; 99(9):3692-9. PubMed ID: 17719776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of waste activated sludge anaerobic digestion by a novel chemical free acid/alkaline pretreatment using electrolysis.
    Charles W; Ng B; Cord-Ruwisch R; Cheng L; Ho G; Kayaalp A
    Water Sci Technol; 2013; 67(12):2827-31. PubMed ID: 23787324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sludge reduction and volatile fatty acid recovery using microwave advanced oxidation process.
    Liao PH; Lo KV; Chan WI; Wong WT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Apr; 42(5):633-9. PubMed ID: 17454370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton's reagent at carbon-felt cathode.
    Sirés I; Guivarch E; Oturan N; Oturan MA
    Chemosphere; 2008 Jun; 72(4):592-600. PubMed ID: 18486964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion.
    Yu Z; Liu W; Shi Y; Wang B; Huang C; Liu C; Wang A
    Sci Total Environ; 2021 May; 767():144344. PubMed ID: 33434845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomposition of nitrotoluenes from trinitrotoluene manufacturing process by Electro-Fenton oxidation.
    Chen WS; Liang JS
    Chemosphere; 2008 Jun; 72(4):601-7. PubMed ID: 18433833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.