These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17537640)

  • 1. Förster energy transfer from nonexponentially decaying donors.
    Czuper A; Gryczynski I; Kuśba J
    J Photochem Photobiol B; 2007 Jun; 87(3):200-8. PubMed ID: 17537640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Förster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile.
    Felorzabihi N; Froimowicz P; Haley JC; Bardajee GR; Li B; Bovero E; van Veggel FC; Winnik MA
    J Phys Chem B; 2009 Feb; 113(8):2262-72. PubMed ID: 19182945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes.
    Heyduk T; Heyduk E
    Anal Biochem; 2001 Feb; 289(1):60-7. PubMed ID: 11161295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes.
    Maliwal BP; Kuśba J; Lakowicz JR
    Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy transfer as a probe of protein dynamics in the proteins transferrin and calmodulin.
    O'Hara PB; Gorski KM; Rosen MA
    Biophys J; 1988 Jun; 53(6):1007-13. PubMed ID: 3395656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic energy-transfer rate constants for geometrical isomers of a bichromophoric macrocyclic complex.
    Moore EG; Bernhardt PV; Riley MJ; Smith TA
    Inorg Chem; 2006 Jan; 45(1):51-8. PubMed ID: 16390039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The determination of the Förster distance (R0) for phenanthrene and anthracene derivatives in poly(methyl methacrylate) films.
    Roller RS; Winnik MA
    J Phys Chem B; 2005 Jun; 109(25):12261-9. PubMed ID: 16852513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of electron-transfer-induced fluorescence quenching upon conversion to the signaling state in the blue-light receptor, TePixD, from Thermosynechococcus elongatus.
    Shibata Y; Murai Y; Satoh Y; Fukushima Y; Okajima K; Ikeuchi M; Itoh S
    J Phys Chem B; 2009 Jun; 113(23):8192-8. PubMed ID: 19449828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical study of triplet energy transfer in rigid polymer films.
    Merkel PB; Dinnocenzo JP
    J Phys Chem A; 2008 Oct; 112(43):10790-800. PubMed ID: 18834093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence energy transfer on erythrocyte membranes.
    Fuchs HM; Hof M; Mudogo V; Lawaczeck R
    Gen Physiol Biophys; 1997 Mar; 16(1):15-28. PubMed ID: 9290940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced energy transfer in bichromophoric pyrene-PPV oligomer systems: the role of flexible donor-acceptor bridges.
    Rodríguez-Córdoba W; Sierra CA; Ochoa Puentes C; Lahti PM; Peon J
    J Phys Chem B; 2012 Mar; 116(11):3490-503. PubMed ID: 22356447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer dynamics in Re(I)-based polynuclear assemblies: a quantitative application of Förster theory.
    Knight TE; Guo D; Claude JP; McCusker JK
    Inorg Chem; 2008 Aug; 47(16):7249-61. PubMed ID: 18646845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the quantitative molecular analysis of electronic energy transfer within donor-acceptor pairs.
    Isaksson M; Norlin N; Westlund PO; Johansson LB
    Phys Chem Chem Phys; 2007 Apr; 9(16):1941-51. PubMed ID: 17431522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins.
    Kumar CV; Duff MR
    Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical energy transport and interactions between the excitations in a coumarin-perylene bisimide dendrimer.
    Augulis R; Pugzlys A; Hurenkamp JH; Feringa BL; van Esch JH; van Loosdrecht PH
    J Phys Chem A; 2007 Dec; 111(50):12944-53. PubMed ID: 18044854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extended Förster theory: a quantitative approach to the determination of inter-chromophore distances in biomacromolecules.
    Opanasyuk O; Johansson LB
    Phys Chem Chem Phys; 2010 Jul; 12(28):7758-67. PubMed ID: 20520912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Förster energy transfer within a microspherical cavity.
    Fujiwara H; Sasaki K; Masuhara H
    Chemphyschem; 2005 Nov; 6(11):2410-6. PubMed ID: 16273574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.