These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17537757)

  • 1. Assessing breast tissue density by transillumination breast spectroscopy (TIBS): an intermediate indicator of cancer risk.
    Blackmore KM; Knight JA; Jong R; Lilge L
    Br J Radiol; 2007 Jul; 80(955):545-56. PubMed ID: 17537757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between transillumination breast spectroscopy and quantitative mammographic features of the breast.
    Blackmore KM; Knight JA; Lilge L
    Cancer Epidemiol Biomarkers Prev; 2008 May; 17(5):1043-50. PubMed ID: 18483324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical transillumination spectroscopy to quantify parenchymal tissue density: an indicator for breast cancer risk.
    Simick MK; Lilge L
    Br J Radiol; 2005 Nov; 78(935):1009-17. PubMed ID: 16249602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.
    Simick MK; Jong R; Wilson B; Lilge L
    J Biomed Opt; 2004; 9(4):794-803. PubMed ID: 15250768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value.
    Blyschak K; Simick M; Jong R; Lilge L
    Med Phys; 2004 Jun; 31(6):1398-414. PubMed ID: 15259643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of mammographic density on an interval scale by transillumination breast spectroscopy.
    Blackmore KM; Dick S; Knight J; Lilge L
    J Biomed Opt; 2008; 13(6):064030. PubMed ID: 19123676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The association between breast tissue optical content and mammographic density in pre- and post-menopausal women.
    Blackmore KM; Knight JA; Walter J; Lilge L
    PLoS One; 2015; 10(1):e0115851. PubMed ID: 25590139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reassessment of transillumination light scanning for the diagnosis of breast cancer.
    Health Technol Assess Rep; 1988; (2):1-7. PubMed ID: 3078842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical activity and mammographic parenchymal patterns among Greek postmenopausal women.
    Marmara EA; Papacharalambous XN; Kouloulias VE; Maridaki DM; Baltopoulos JP
    Maturitas; 2011 May; 69(1):74-80. PubMed ID: 21377300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting risk of breast cancer in postmenopausal women by hormone receptor status.
    Chlebowski RT; Anderson GL; Lane DS; Aragaki AK; Rohan T; Yasmeen S; Sarto G; Rosenberg CA; Hubbell FA;
    J Natl Cancer Inst; 2007 Nov; 99(22):1695-705. PubMed ID: 18000216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transillumination in breast cancer detection: screening failures and potential.
    Geslien GE; Fisher JR; DeLaney C
    AJR Am J Roentgenol; 1985 Mar; 144(3):619-22. PubMed ID: 3871574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical assessment of mammographic breast density by a 12-wavelength vs a continuous-spectrum optical spectroscopy device.
    Walter EJ; Lilge L
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28700125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of breast cancer screening in countries with intermediate and increasing incidence of breast cancer.
    Wu GH; Chen LS; Chang KJ; Hou MF; Chen SC; Liu TJ; Huang CS; Hsu GC; Yu CC; Jeng LL; Chen ST; Chou YH; Wu CY; Shin-Lan K; Chen TH;
    J Med Screen; 2006; 13 Suppl 1():S23-7. PubMed ID: 17227638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oral contraceptive use and other risk factors in relation to HER-2/neu overexpression in breast cancer among young women.
    Gammon MD; Hibshoosh H; Terry MB; Bose S; Schoenberg JB; Brinton LA; Bernstein JL; Thompson WD
    Cancer Epidemiol Biomarkers Prev; 1999 May; 8(5):413-9. PubMed ID: 10350436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-risk mammographic parenchymal patterns and anthropometric measures: a case-control study.
    Sala E; Warren R; McCann J; Duffy S; Luben R; Day N
    Br J Cancer; 1999 Dec; 81(7):1257-61. PubMed ID: 10584891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic imaging with light.
    Hebden JC; Delpy DT
    Br J Radiol; 1997 Nov; 70 Spec No():S206-14. PubMed ID: 9534736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field cancerization in the understanding of parenchymal analysis of mammograms for breast cancer risk assessment.
    Miranda DA; Pertuz S
    Med Hypotheses; 2020 Mar; 136():109511. PubMed ID: 31837523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Contrast media for optical mammography].
    Riefke B; Licha K; Semmler W
    Radiologe; 1997 Sep; 37(9):749-55. PubMed ID: 9424621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Diaphanography of the breast: myth or reality?].
    Annonier C
    J Belge Radiol; 1990 Oct; 73(5):387-94. PubMed ID: 2273048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Regions of Interest in Parenchymal Analysis for Breast Cancer Risk Assessment.
    Africano G; Arponen O; Sassi A; Karivaara-Makela M; Holli-Helenius K; Rinta-Kiikka I; Laaperi AL; Pertuz S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1136-1139. PubMed ID: 33018187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.