BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17537795)

  • 1. EEL-1, a Hect E3 ubiquitin ligase, controls asymmetry and persistence of the SKN-1 transcription factor in the early C. elegans embryo.
    Page BD; Diede SJ; Tenlen JR; Ferguson EL
    Development; 2007 Jun; 134(12):2303-14. PubMed ID: 17537795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis.
    Du Z; He F; Yu Z; Bowerman B; Bao Z
    Dev Biol; 2015 Feb; 398(2):267-79. PubMed ID: 25523393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans.
    Choe KP; Przybysz AJ; Strange K
    Mol Cell Biol; 2009 May; 29(10):2704-15. PubMed ID: 19273594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality.
    Lin R
    Dev Biol; 2003 Jun; 258(1):226-39. PubMed ID: 12781695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos.
    Robertson SM; Shetty P; Lin R
    Dev Biol; 2004 Dec; 276(2):493-507. PubMed ID: 15581881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UBR-5, a Conserved HECT-Type E3 Ubiquitin Ligase, Negatively Regulates Notch-Type Signaling in Caenorhabditis elegans.
    Safdar K; Gu A; Xu X; Au V; Taylor J; Flibotte S; Moerman DG; Maine EM
    G3 (Bethesda); 2016 Jul; 6(7):2125-34. PubMed ID: 27185398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos.
    Bowerman B; Draper BW; Mello CC; Priess JR
    Cell; 1993 Aug; 74(3):443-52. PubMed ID: 8348611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.
    Ross AJ; Li M; Yu B; Gao MX; Derry WB
    Cell Death Differ; 2011 Jul; 18(7):1140-9. PubMed ID: 21233842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos.
    Bowerman B; Ingram MK; Hunter CP
    Development; 1997 Oct; 124(19):3815-26. PubMed ID: 9367437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple transcription factors directly regulate Hox gene lin-39 expression in ventral hypodermal cells of the C. elegans embryo and larva, including the hypodermal fate regulators LIN-26 and ELT-6.
    Liu WJ; Reece-Hoyes JS; Walhout AJ; Eisenmann DM
    BMC Dev Biol; 2014 May; 14():17. PubMed ID: 24885717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Wnt effector POP-1 and the PAL-1/Caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development.
    Maduro MF; Kasmir JJ; Zhu J; Rothman JH
    Dev Biol; 2005 Sep; 285(2):510-23. PubMed ID: 16084508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans.
    Lin KT; Broitman-Maduro G; Hung WW; Cervantes S; Maduro MF
    Dev Biol; 2009 Jan; 325(1):296-306. PubMed ID: 18977344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A HECT domain ubiquitin ligase closely related to the mammalian protein WWP1 is essential for Caenorhabditis elegans embryogenesis.
    Huang K; Johnson KD; Petcherski AG; Vandergon T; Mosser EA; Copeland NG; Jenkins NA; Kimble J; Bresnick EH
    Gene; 2000 Jul; 252(1-2):137-45. PubMed ID: 10903445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRT-1/calreticulin and the E3 ligase EEL-1/HUWE1 control hemidesmosome maturation in C. elegans development.
    Zahreddine H; Zhang H; Diogon M; Nagamatsu Y; Labouesse M
    Curr Biol; 2010 Feb; 20(4):322-7. PubMed ID: 20153198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maternal deployment of the embryonic SKN-1-->MED-1,2 cell specification pathway in C. elegans.
    Maduro MF; Broitman-Maduro G; Mengarelli I; Rothman JH
    Dev Biol; 2007 Jan; 301(2):590-601. PubMed ID: 16979152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA replication defects delay cell division and disrupt cell polarity in early Caenorhabditis elegans embryos.
    Encalada SE; Martin PR; Phillips JB; Lyczak R; Hamill DR; Swan KA; Bowerman B
    Dev Biol; 2000 Dec; 228(2):225-38. PubMed ID: 11112326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response.
    An JH; Blackwell TK
    Genes Dev; 2003 Aug; 17(15):1882-93. PubMed ID: 12869585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced dosage of pos-1 suppresses Mex mutants and reveals complex interactions among CCCH zinc-finger proteins during Caenorhabditis elegans embryogenesis.
    Tenlen JR; Schisa JA; Diede SJ; Page BD
    Genetics; 2006 Dec; 174(4):1933-45. PubMed ID: 17028349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. elegans by distinct mechanisms.
    Tullet JMA; Green JW; Au C; Benedetto A; Thompson MA; Clark E; Gilliat AF; Young A; Schmeisser K; Gems D
    Aging Cell; 2017 Oct; 16(5):1191-1194. PubMed ID: 28612944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans.
    Kahn NW; Rea SL; Moyle S; Kell A; Johnson TE
    Biochem J; 2008 Jan; 409(1):205-13. PubMed ID: 17714076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.