These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 17537805)

  • 1. Volume change of the ocular lens during accommodation.
    Gerometta R; Zamudio AC; Escobar DP; Candia OA
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C797-804. PubMed ID: 17537805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface change of the mammalian lens during accommodation.
    Zamudio AC; Candia OA; Kong CW; Wu B; Gerometta R
    Am J Physiol Cell Physiol; 2008 Jun; 294(6):C1430-5. PubMed ID: 18385280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The significance of the shape of the lens and capsular energy changes in accommodation.
    Fisher RF
    J Physiol; 1969 Mar; 201(1):21-47. PubMed ID: 5775812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relation between injected volume and optical parameters in refilled isolated porcine lenses.
    Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in rabbit and cow lens shape and volume upon imposition of anisotonic conditions.
    Kong CW; Gerometta R; Alvarez LJ; Candia OA
    Exp Eye Res; 2009 Oct; 89(4):469-78. PubMed ID: 19427852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI study of the changes in crystalline lens shape with accommodation and aging in humans.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    J Vis; 2011 Mar; 11(3):. PubMed ID: 21441300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A decrease in the permeability of aquaporin zero as a possible cause for presbyopia.
    Gerometta R; Candia OA
    Med Hypotheses; 2016 Jan; 86():132-4. PubMed ID: 26615967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia.
    Reilly MA
    Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of lenticular accommodation in chicks.
    Glasser A; Murphy CJ; Troilo D; Howland HC
    Vision Res; 1995 Jun; 35(11):1525-40. PubMed ID: 7667911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presbyopia, accommodation, and the mature catenary.
    Coleman DJ; Fish SK
    Ophthalmology; 2001 Sep; 108(9):1544-51. PubMed ID: 11535447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Questioning our classical understanding of accommodation and presbyopia.
    Adler-Grinberg D
    Am J Optom Physiol Opt; 1986 Jul; 63(7):571-80. PubMed ID: 3526908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Magnetic resonance imaging study of effects of accommodation on human lens morphological characters].
    Zheng SL; Zhang A; Shi JJ; Zhou YX
    Zhonghua Yi Xue Za Zhi; 2013 Nov; 93(41):3280-3. PubMed ID: 24401623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of Crystalline Lens Volume During Accommodation in a Lens Stretcher.
    Marussich L; Manns F; Nankivil D; Maceo Heilman B; Yao Y; Arrieta-Quintero E; Ho A; Augusteyn R; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4239-48. PubMed ID: 26161985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study.
    Hermans EA; Pouwels PJ; Dubbelman M; Kuijer JP; van der Heijde RG; Heethaar RM
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):281-9. PubMed ID: 18676625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.