These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17537904)

  • 21. A cholinergic mechanism underlies persistent neural activity necessary for eye fixation.
    Delgado-García JM; Yajeya J; Navarro-López Jde D
    Prog Brain Res; 2006; 154():211-24. PubMed ID: 17010712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of abducens nucleus neuron discharges during disjunctive saccades.
    Sylvestre PA; Cullen KE
    J Neurophysiol; 2002 Dec; 88(6):3452-68. PubMed ID: 12466460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming sensory perceptions into motor commands: evidence from programming of eye movements.
    Leigh RJ; Rottach KG; Das VE
    Ann N Y Acad Sci; 1997 Dec; 835():353-62. PubMed ID: 9616785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence against direct connections to PPRF EBNs from SC in the monkey.
    Keller EL; McPeek RM; Salz T
    J Neurophysiol; 2000 Sep; 84(3):1303-13. PubMed ID: 10980004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of oculomotor and visual activities in the primate pedunculopontine tegmental nucleus during visually guided saccade tasks.
    Okada K; Kobayashi Y
    Eur J Neurosci; 2009 Dec; 30(11):2211-23. PubMed ID: 20128856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.
    Walton MM; Freedman EG
    J Neurophysiol; 2014 Jan; 111(2):300-12. PubMed ID: 24174648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination of gaze shifts in primates: brainstem inputs to neck and extraocular motoneuron pools.
    Robinson FR; Phillips JO; Fuchs AF
    J Comp Neurol; 1994 Aug; 346(1):43-62. PubMed ID: 7962711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anatomy and physiology of saccadic long-lead burst neurons recorded in the alert squirrel monkey. II. Pontine neurons.
    Scudder CA; Moschovakis AK; Karabelas AB; Highstein SM
    J Neurophysiol; 1996 Jul; 76(1):353-70. PubMed ID: 8836230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discharge properties of monkey tectoreticular neurons.
    Rodgers CK; Munoz DP; Scott SH; Paré M
    J Neurophysiol; 2006 Jun; 95(6):3502-11. PubMed ID: 16641382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Premotor inhibitory neurons carry signals related to saccade adaptation in the monkey.
    Kojima Y; Iwamoto Y; Robinson FR; Noto CT; Yoshida K
    J Neurophysiol; 2008 Jan; 99(1):220-30. PubMed ID: 17977929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of partial lidocaine inactivation of the paramedian pontine reticular formation on saccades of macaques.
    Barton EJ; Nelson JS; Gandhi NJ; Sparks DL
    J Neurophysiol; 2003 Jul; 90(1):372-86. PubMed ID: 12611984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of reversible inactivation of the primate mesencephalic reticular formation. II. Hypometric vertical saccades.
    Waitzman DM; Silakov VL; DePalma-Bowles S; Ayers AS
    J Neurophysiol; 2000 Apr; 83(4):2285-99. PubMed ID: 10758134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal evidence for individual eye control in the primate cMRF.
    Waitzman DM; Van Horn MR; Cullen KE
    Prog Brain Res; 2008; 171():143-50. PubMed ID: 18718293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A quantitative analysis of the correlations between eye movements and neural activity in the pretectum.
    Missal M; Coimbra A; Lefèvre P; Olivier E
    Exp Brain Res; 2002 Apr; 143(3):373-82. PubMed ID: 11889515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuronal responses in macaque area PEc to saccades and eye position.
    Raffi M; Ballabeni A; Maioli MG; Squatrito S
    Neuroscience; 2008 Oct; 156(3):413-24. PubMed ID: 18782605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-neuron evidence for a contribution of the dorsal pontine nuclei to both types of target-directed eye movements, saccades and smooth-pursuit.
    Dicke PW; Barash S; Ilg UJ; Thier P
    Eur J Neurosci; 2004 Feb; 19(3):609-24. PubMed ID: 14984411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combination of neuronal signals representing object-centered location and saccade direction in macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 May; 97(5):3554-66. PubMed ID: 17329630
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oblique saccadic eye movements of primates.
    King WM; Lisberger SG; Fuchs AF
    J Neurophysiol; 1986 Sep; 56(3):769-84. PubMed ID: 3783219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental test of two models for the generation of oblique saccades.
    van Gisbergen JA; van Opstal AJ; Schoenmakers JJ
    Exp Brain Res; 1985; 57(2):321-36. PubMed ID: 3972033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.