These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1753850)

  • 21. Laser shaping of corneal transplants in vitro: area ablation with small overlapping laser spots produced by a pulsed scanning laser beam using an optimizing ablation algorithm.
    Homolka P; Biowski R; Kaminski S; Barisani T; Husinsky W; Bergmann H; Grabner G
    Phys Med Biol; 1999 May; 44(5):1169-80. PubMed ID: 10368010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Corneal morphology in vitro after superficial keratectomy with q-switched Er:YSGG and free-running Er:YAG lasers.
    Kampmeier J; Russ D; Schafer S; Lang GE; Lasser T; Steiner R; Lang GK
    J Refract Surg; 2000; 16(3):341-8. PubMed ID: 10832984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CO2, excimer and erbium:YAG laser in deep sclerectomy.
    Klink T; Schlunck G; Lieb W; Klink J; Grehn F
    Ophthalmologica; 2008; 222(2):74-80. PubMed ID: 18303226
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histologic analysis of thermal effects of laser thermokeratoplasty and corneal ablation using Sirius-red polarization microscopy.
    Asiyo-Vogel MN; Brinkmann R; Notbohm H; Eggers R; Lubatschowski H; Laqua H; Vogel A
    J Cataract Refract Surg; 1997 May; 23(4):515-26. PubMed ID: 9209986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Corneal lathing using the excimer laser and a computer-controlled positioning system.
    Biowski R; Homolka P; Barisani-Asenbauer T; Baumgartner I; Husinsky W; Kaminski S; Lametschwandtner A; Muss W; Grabner G
    J Refract Surg; 2000; 16(1):23-31. PubMed ID: 10693616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laser welding of synthetic epikeratoplasty lenticules to the cornea.
    Gailitis RP; Thompson KP; Ren QS; Morris J; Waring GO
    Refract Corneal Surg; 1990; 6(6):430-6. PubMed ID: 2076420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excimer laser corneal ablation: absence of a significant "incubation" effect.
    Pettit GH; Ediger MN; Weiblinger RP
    Lasers Surg Med; 1991; 11(5):411-8. PubMed ID: 1816475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Wound healing of the cornea of New World monkeys after surface keratectomy: Er:YAG-excimer laser].
    Kahle G; Daqun X; Seiler T; Schröter-Kermani C; Wollensak J
    Fortschr Ophthalmol; 1991; 88(4):380-5. PubMed ID: 1786926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative and ultrastructural studies of excimer laser ablation of the cornea at 193 and 248 nanometers.
    Puliafito CA; Wong K; Steinert RF
    Lasers Surg Med; 1987; 7(2):155-9. PubMed ID: 3613806
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Q-switched CTE:YAG (2.69 microns) laser ablation: basic investigations on soft (corneal) and hard (dental) tissues.
    Kermani O; Lubatschowski H; Asshauer T; Ertmer W; Lukin A; Ermakov B; Krieglstein GK
    Lasers Surg Med; 1993; 13(5):537-42. PubMed ID: 8264324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of ultraviolet laser light with the cornea.
    Krueger RR; Trokel SL; Schubert HD
    Invest Ophthalmol Vis Sci; 1985 Nov; 26(11):1455-64. PubMed ID: 4055287
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphological response to UV-B irradiation after excimer-laser photorefractive keratectomy.
    Nagy ZZ; Hiscott P; Seitz B; Schlötzer-Schrehardt U; Süveges I; Naumann GO
    Ger J Ophthalmol; 1996 Nov; 5(6):352-61. PubMed ID: 9479518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm.
    Stern D; Schoenlein RW; Puliafito CA; Dobi ET; Birngruber R; Fujimoto JG
    Arch Ophthalmol; 1989 Apr; 107(4):587-92. PubMed ID: 2705929
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [193 nm Excimer laser photoablation of the cornea. Spectrum and transmission behavior of secondary irradiation].
    Lubatschowski H; Kermani O
    Ophthalmologe; 1992 Apr; 89(2):134-8. PubMed ID: 1600320
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of tissue effects with sculptured fiberoptic cables and other Nd:YAG laser and argon laser treatments.
    Shirk GJ; Gimpelson RJ; Krewer K
    Lasers Surg Med; 1991; 11(6):563-8. PubMed ID: 1836522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultraviolet-B enhances corneal stromal response to 193-nm excimer laser treatment.
    Nagy ZZ; Hiscott P; Seitz B; Shlötzer-Schrehardt U; Simon M; Süveges I; Naumann GO
    Ophthalmology; 1997 Mar; 104(3):375-80. PubMed ID: 9082259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Photorefractive keratectomy. Free-running vs. q-switched Er:YAG laser (scanning mode)].
    Kampmeier J; Schäfer S; Lang GE; Lang GK
    Ophthalmologe; 1999 Dec; 96(12):805-12. PubMed ID: 10643315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.
    Marshall J; Trokel S; Rothery S; Krueger RR
    Br J Ophthalmol; 1986 Jul; 70(7):482-501. PubMed ID: 3013283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.