These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 17538717)
1. Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Cheng X; Liu YS; Irimia D; Demirci U; Yang L; Zamir L; Rodríguez WR; Toner M; Bashir R Lab Chip; 2007 Jun; 7(6):746-55. PubMed ID: 17538717 [TBL] [Abstract][Full Text] [Related]
2. Coincidence detection of heterogeneous cell populations from whole blood with coplanar electrodes in a microfluidic impedance cytometer. Hassan U; Bashir R Lab Chip; 2014 Nov; 14(22):4370-81. PubMed ID: 25231594 [TBL] [Abstract][Full Text] [Related]
3. Electrical cell counting process characterization in a microfluidic impedance cytometer. Hassan U; Bashir R Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912 [TBL] [Abstract][Full Text] [Related]
4. Impedance spectroscopy using maximum length sequences: application to single cell analysis. Gawad S; Sun T; Green NG; Morgan H Rev Sci Instrum; 2007 May; 78(5):054301. PubMed ID: 17552843 [TBL] [Abstract][Full Text] [Related]
6. A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects. Cheng X; Irimia D; Dixon M; Sekine K; Demirci U; Zamir L; Tompkins RG; Rodriguez W; Toner M Lab Chip; 2007 Feb; 7(2):170-8. PubMed ID: 17268618 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection. Wang Z; Chin SY; Chin CD; Sarik J; Harper M; Justman J; Sia SK Anal Chem; 2010 Jan; 82(1):36-40. PubMed ID: 19938816 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic CD4+ and CD8+ T lymphocyte counters for point-of-care HIV diagnostics using whole blood. Watkins NN; Hassan U; Damhorst G; Ni H; Vaid A; Rodriguez W; Bashir R Sci Transl Med; 2013 Dec; 5(214):214ra170. PubMed ID: 24307694 [TBL] [Abstract][Full Text] [Related]
9. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis. Mishra NN; Retterer S; Zieziulewicz TJ; Isaacson M; Szarowski D; Mousseau DE; Lawrence DA; Turner JN Biosens Bioelectron; 2005 Nov; 21(5):696-704. PubMed ID: 16242607 [TBL] [Abstract][Full Text] [Related]
10. Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Holmes D; Pettigrew D; Reccius CH; Gwyer JD; van Berkel C; Holloway J; Davies DE; Morgan H Lab Chip; 2009 Oct; 9(20):2881-9. PubMed ID: 19789739 [TBL] [Abstract][Full Text] [Related]
11. Rapid automated cell quantification on HIV microfluidic devices. Alyassin MA; Moon S; Keles HO; Manzur F; Lin RL; Hæggstrom E; Kuritzkes DR; Demirci U Lab Chip; 2009 Dec; 9(23):3364-9. PubMed ID: 19904402 [TBL] [Abstract][Full Text] [Related]
12. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel. Song Y; Yang J; Pan X; Li D Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672 [TBL] [Abstract][Full Text] [Related]
13. A microchip approach for practical label-free CD4+ T-cell counting of HIV-infected subjects in resource-poor settings. Cheng X; Irimia D; Dixon M; Ziperstein JC; Demirci U; Zamir L; Tompkins RG; Toner M; Rodriguez WR J Acquir Immune Defic Syndr; 2007 Jul; 45(3):257-61. PubMed ID: 17414933 [TBL] [Abstract][Full Text] [Related]
14. Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics. Cheng X; Gupta A; Chen C; Tompkins RG; Rodriguez W; Toner M Lab Chip; 2009 May; 9(10):1357-64. PubMed ID: 19417901 [TBL] [Abstract][Full Text] [Related]
15. A quartz nanopillar hemocytometer for high-yield separation and counting of CD4(+) T lymphocytes. Kim DJ; Seol JK; Wu Y; Ji S; Kim GS; Hyung JH; Lee SY; Lim H; Fan R; Lee SK Nanoscale; 2012 Apr; 4(7):2500-7. PubMed ID: 22218701 [TBL] [Abstract][Full Text] [Related]
16. Lab-On-A-Chip Device for Yeast Cell Characterization in Low-Conductivity Media Combining Cytometry and Bio-Impedance. Claudel J; Alves De Araujo AL; Nadi M; Kourtiche D Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31370234 [TBL] [Abstract][Full Text] [Related]
17. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis. Zhu H; Ozcan A Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539 [TBL] [Abstract][Full Text] [Related]
18. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy. Valero A; Braschler T; Renaud P Lab Chip; 2010 Sep; 10(17):2216-25. PubMed ID: 20664865 [TBL] [Abstract][Full Text] [Related]
19. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device. Justin G; Nasir M; Ligler FS Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604 [TBL] [Abstract][Full Text] [Related]
20. PDMS-film coated on PCB for AC impedance sensing of biological cells. Guo J; Li CM; Kang Y Biomed Microdevices; 2014 Oct; 16(5):681-6. PubMed ID: 24850232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]