These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 17538719)

  • 1. A hydrogel-based microfluidic device for the studies of directed cell migration.
    Cheng SY; Heilman S; Wasserman M; Archer S; Shuler ML; Wu M
    Lab Chip; 2007 Jun; 7(6):763-9. PubMed ID: 17538719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies.
    Haessler U; Kalinin Y; Swartz MA; Wu M
    Biomed Microdevices; 2009 Aug; 11(4):827-35. PubMed ID: 19343497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial chemotaxis transverse to axial flow in a microfluidic channel.
    Lanning LM; Ford RM; Long T
    Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative measurements of the strength of adhesion of human neutrophils to a substratum in a microfluidic device.
    Gutierrez E; Groisman A
    Anal Chem; 2007 Mar; 79(6):2249-58. PubMed ID: 17305308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.
    Sung JH; Shuler ML
    Lab Chip; 2009 May; 9(10):1385-94. PubMed ID: 19417905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biological sensor platform using a pneumatic-valve controlled microfluidic device containing Tetrahymena pyriformis.
    Nam SW; Van Noort D; Yang Y; Park S
    Lab Chip; 2007 May; 7(5):638-40. PubMed ID: 17476385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic device for analyzing preferential chemotaxis and chemoreceptor sensitivity of bacterial cells toward carbon sources.
    Kim M; Kim SH; Lee SK; Kim T
    Analyst; 2011 Aug; 136(16):3238-43. PubMed ID: 21716994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quantitative observation and imaging of single tumor cell migration and deformation using a multi-gap microfluidic device representing the blood vessel.
    Chaw KC; Manimaran M; Tay FE; Swaminathan S
    Microvasc Res; 2006 Nov; 72(3):153-60. PubMed ID: 17081570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic biosensor based on an array of hydrogel-entrapped enzymes.
    Heo J; Crooks RM
    Anal Chem; 2005 Nov; 77(21):6843-51. PubMed ID: 16255581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic techniques for the analysis of bacterial chemotaxis.
    Englert DL; Jayaraman A; Manson MD
    Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.