BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17538974)

  • 1. Comparing smoothing techniques in Cox models for exposure-response relationships.
    Govindarajulu US; Spiegelman D; Thurston SW; Ganguli B; Eisen EA
    Stat Med; 2007 Sep; 26(20):3735-52. PubMed ID: 17538974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The comparison of alternative smoothing methods for fitting non-linear exposure-response relationships with Cox models in a simulation study.
    Govindarajulu US; Malloy EJ; Ganguli B; Spiegelman D; Eisen EA
    Int J Biostat; 2009 Jan; 5(1):Article 2. PubMed ID: 20231865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of smoothing methods for determining of the effecting factors on the survival rate of gastric cancer patients.
    Noorkojuri H; Hajizadeh E; Baghestani A; Pourhoseingholi M
    Iran Red Crescent Med J; 2013 Feb; 15(2):166-72. PubMed ID: 23682331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating and Interpreting Effects from Nonlinear Exposure-Response Curves in Occupational Cohorts Using Truncated Power Basis Expansions and Penalized Splines.
    Malloy EJ; Kapellusch JM; Garg A
    Comput Math Methods Med; 2017; 2017():7518035. PubMed ID: 29312462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Smoothing Techniques for Fitting the Nonlinear Effect of Covariate in Cox Models.
    Roshani D; Ghaderi E
    Acta Inform Med; 2016 Feb; 24(1):38-41. PubMed ID: 27041809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smoothing in survival models: an application to workers exposed to metalworking fluids.
    Thurston SW; Eisen EA; Schwartz J
    Epidemiology; 2002 Nov; 13(6):685-92. PubMed ID: 12410010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical guide to dose-response analyses and risk assessment in occupational epidemiology.
    Steenland K; Deddens JA
    Epidemiology; 2004 Jan; 15(1):63-70. PubMed ID: 14712148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation dose response estimation with emphasis on low dose range using restricted cubic splines: application to all solid cancer mortality data, 1950-2003, in atomic bomb survivors.
    Nakashima E
    Health Phys; 2015 Jul; 109(1):15-24. PubMed ID: 26011495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smoothing in occupational cohort studies: an illustration based on penalised splines.
    Eisen EA; Agalliu I; Thurston SW; Coull BA; Checkoway H
    Occup Environ Med; 2004 Oct; 61(10):854-60. PubMed ID: 15377772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exposure-specific lung cancer risks in Chinese chrysotile textile workers and mining workers.
    Wang X; Lin S; Yano E; Yu IT; Courtice M; Lan Y; Christiani DC
    Lung Cancer; 2014 Aug; 85(2):119-24. PubMed ID: 24854404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A retrospective cohort study on mortality among silicotic workers in Hong Kong with emphasis on lung cancer].
    Yu ITs; Tse LA; Chi CL; Tze WW; Cheuk MT; Alan CC
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Jan; 26(1):29-33. PubMed ID: 18302888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regression models for the effects of exposure rate and cumulative exposure.
    Richardson DB; Cole SR; Langholz B
    Epidemiology; 2012 Nov; 23(6):892-9. PubMed ID: 23007044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear dose-response relationship between radon exposure and the risk of lung cancer: evidence from a meta-analysis of published observational studies.
    Duan P; Quan C; Hu C; Zhang J; Xie F; Hu X; Yu Z; Gao B; Liu Z; Zheng H; Liu C; Wang C; Yu T; Qi S; Fu W; Kourouma A; Yang K
    Eur J Cancer Prev; 2015 Jul; 24(4):267-77. PubMed ID: 25117725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quantitative assessment of lung cancer risk and occupational cadmium exposure.
    Stayner L; Smith R; Thun M; Schnorr T; Lemen R
    IARC Sci Publ; 1992; (118):447-55. PubMed ID: 1303972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of radon exposures on lung cancer mortality in German uranium miners, 1946-2003.
    Walsh L; Tschense A; Schnelzer M; Dufey F; Grosche B; Kreuzer M
    Radiat Res; 2010 Jan; 173(1):79-90. PubMed ID: 20041762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible modeling of exposure-response relationship between long-term average levels of particulate air pollution and mortality in the American Cancer Society study.
    Abrahamowicz M; Schopflocher T; Leffondré K; du Berger R; Krewski D
    J Toxicol Environ Health A; 2003 Aug 22-Oct 10; 66(16-19):1625-54. PubMed ID: 12959833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing for cubic smoothing splines under dependent data.
    Nummi T; Pan J; Siren T; Liu K
    Biometrics; 2011 Sep; 67(3):871-5. PubMed ID: 21210770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model.
    Little MP
    Int J Radiat Biol; 2002 Mar; 78(3):145-63. PubMed ID: 11869470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using fractional polynomials and restricted cubic splines to model non-proportional hazards or time-varying covariate effects in the Cox regression model.
    Austin PC; Fang J; Lee DS
    Stat Med; 2022 Feb; 41(3):612-624. PubMed ID: 34806210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung cancer mortality in North Carolina and South Carolina chrysotile asbestos textile workers.
    Elliott L; Loomis D; Dement J; Hein MJ; Richardson D; Stayner L
    Occup Environ Med; 2012 Jun; 69(6):385-90. PubMed ID: 22267448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.