These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1753899)

  • 1. The role of nonlinear ultrasound propagation during hyperthermia treatments.
    Hynynen K
    Med Phys; 1991; 18(6):1156-63. PubMed ID: 1753899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of enhanced temperature elevation due to nonlinear propagation of focussed ultrasound in dog's thigh in vivo.
    Hynynen K
    Ultrasound Med Biol; 1987 Feb; 13(2):85-91. PubMed ID: 3590364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The threshold for thermally significant cavitation in dog's thigh muscle in vivo.
    Hynynen K
    Ultrasound Med Biol; 1991; 17(2):157-69. PubMed ID: 2053212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal configuration of multiple-focused ultrasound transducers for external hyperthermia.
    Lin WL; Chen YY; Lin SY; Yen JY; Shieh MJ; Kuo TS
    Med Phys; 1999 Sep; 26(9):2007-16. PubMed ID: 10505892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of nonlinear effects with focused ultrasound in tissues: an "acoustic bragg peak".
    Swindell W
    Ultrasound Med Biol; 1985; 11(1):121-30. PubMed ID: 4012895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study.
    Moros EG; Straube WL; Klein EE; Yousaf M; Myerson RJ
    Int J Radiat Oncol Biol Phys; 1995 Feb; 31(4):893-904. PubMed ID: 7860403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specific absorption rate ratio patterns of cylindrical ultrasound transducers for breast tumors.
    Lin WL; Yen JY; Chen YY; Cheng KS; Shieh MJ
    Med Phys; 1998 Jun; 25(6):1041-8. PubMed ID: 9650195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom.
    Khokhlova VA; Bailey MR; Reed JA; Cunitz BW; Kaczkowski PJ; Crum LA
    J Acoust Soc Am; 2006 Mar; 119(3):1834-48. PubMed ID: 16583923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active MR-temperature feedback control of dynamic interstitial ultrasound therapy in brain: in vivo experiments and modeling in native and coagulated tissues.
    N'Djin WA; Burtnyk M; Lipsman N; Bronskill M; Kucharczyk W; Schwartz ML; Chopra R
    Med Phys; 2014 Sep; 41(9):093301. PubMed ID: 25186419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focused ultrasound facilitated thermo-chemotherapy for targeted retinoblastoma treatment: a modeling study.
    Wang S; Mahesh SP; Liu J; Geist C; Zderic V
    Exp Eye Res; 2012 Jul; 100():17-25. PubMed ID: 22564972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The feasibility of interstitial ultrasound hyperthermia.
    Hynynen K
    Med Phys; 1992; 19(4):979-87. PubMed ID: 1518487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cylindrical ultrasonic transducers for cardiac catheter ablation.
    Hynynen K; Dennie J; Zimmer JE; Simmons WN; He DS; Marcus FI; Aguirre M
    IEEE Trans Biomed Eng; 1997 Feb; 44(2):144-51. PubMed ID: 9214794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation-enhanced ultrasound thermal therapy by combined low- and high-frequency ultrasound exposure.
    Liu HL; Chen WS; Chen JS; Shih TC; Chen YY; Lin WL
    Ultrasound Med Biol; 2006 May; 32(5):759-67. PubMed ID: 16677935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient cavitation in tissues during ultrasonically induced hyperthermia.
    Sommer FG; Pounds D
    Med Phys; 1982; 9(1):1-3. PubMed ID: 7078524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature elevations computed for three-layer and four-layer obstetrical tissue models in nonlinear and linear ultrasonic propagation cases.
    Wójcik J; Filipczyński L; Kujawska T
    Ultrasound Med Biol; 1999 Feb; 25(2):259-67. PubMed ID: 10320315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of power and frequency for 3D conformal MRI-controlled transurethral ultrasound therapy with a dual frequency multi-element transducer.
    N'djin WA; Burtnyk M; Bronskill M; Chopra R
    Int J Hyperthermia; 2012; 28(1):87-104. PubMed ID: 22235788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.