These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1753900)

  • 21. A new coaxial TEM radiofrequency/microwave applicator for non-invasive deep-body hyperthermia.
    Lagendijk JJ
    J Microw Power; 1983 Dec; 18(4):367-75. PubMed ID: 6561256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields.
    Raganella L; Banci G; Vannucci I; Franconi C; Tiberio CA
    IEEE Trans Biomed Eng; 1989 Nov; 36(11):1124-32. PubMed ID: 2807321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of a small microwave (2450 MHz) diathermy applicator as suitable for hyperthermia.
    Conway J
    Phys Med Biol; 1983 Mar; 28(3):249-56. PubMed ID: 6844403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Effectiveness of improved intracavity microwave thermotherapy for nasopharyngeal carcinoma].
    Wang W; Zhu L; Chen Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):657-9. PubMed ID: 16856410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in heating patterns due to perturbations by thermometer probes at 915 and 434 MHz.
    Chan KW; Chou CK; McDougall JA; Luk KH
    Int J Hyperthermia; 1988; 4(4):447-56. PubMed ID: 3385232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temperature distribution produced in models by three microwave applicators at 433.92 megahertz.
    Lehmann JF; Guy AW; Stonebridge JB; Warren CG; DeLateur BJ
    Arch Phys Med Rehabil; 1975 Apr; 56(4):145-51. PubMed ID: 1119923
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia.
    Chakaravarthi G; Arunachalam K
    Int J Hyperthermia; 2015; 31(7):737-48. PubMed ID: 26365603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heating patterns induced by a 13.56 MHz radiofrequency generator in large phantoms and pig abdomen and thorax.
    Paliwal BR; Gibbs FA; Wiley AL
    Int J Radiat Oncol Biol Phys; 1982 May; 8(5):857-64. PubMed ID: 7107421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory and design of "shortened" multiantenna microwave applicators with controllable SAR patterns.
    Leybovich LB; Nussbaum GH; Straube WL; Emami BN
    Med Phys; 1991; 18(2):178-83. PubMed ID: 2046602
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The distribution of power and heat produced by interstitial microwave antenna arrays: II. The role of antenna spacing and insertion depth.
    Denman DL; Foster AE; Lewis GC; Redmond KP; Elson HR; Breneman JC; Kereiakes JG; Aron BS
    Int J Radiat Oncol Biol Phys; 1988 Mar; 14(3):537-45. PubMed ID: 3343161
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interstitial microwave hyperthermia applicators having submillimetre diameters.
    Gottlieb CF; Hagmann MJ; Babij TM; Abitbol AA; Lewin AA; Houdek PV; Schwade JG
    Int J Hyperthermia; 1990; 6(3):707-14. PubMed ID: 2376681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz.
    Rossetto F; Stauffer PR
    Int J Hyperthermia; 2001; 17(3):258-70. PubMed ID: 11347730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phantom experimental study on microwave ablation with a water-cooled antenna.
    Liu Y; Yang X; Nan Q; Xiao J; Li L
    Int J Hyperthermia; 2007 Jun; 23(4):381-6. PubMed ID: 17558737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal energy deposition from a single-loop rf whole-body applicator.
    Zwicker RD; Sternick ES
    Med Phys; 1983; 10(1):104-8. PubMed ID: 6843507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiofrequency hyperthermia: the design of coil transducers for local heating.
    Lerch IA; Kohn S
    Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):939-48. PubMed ID: 6863066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental assessment of phased-array heating of neck tumours.
    Gross EJ; Cetas TC; Stauffer PR; Liu RL; Lumori ML
    Int J Hyperthermia; 1990; 6(2):453-74. PubMed ID: 2324581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia.
    Johnson JE; Neuman DG; Maccarini PF; Juang T; Stauffer PR; Turner P
    Int J Hyperthermia; 2006 Sep; 22(6):475-90. PubMed ID: 16971368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heating characteristics of a 430 MHz microwave heating system with a lens applicator in phantoms and miniature pigs.
    Matsuda T; Takatsuka S; Nikawa Y; Kikuchi M
    Int J Hyperthermia; 1990; 6(3):685-96. PubMed ID: 2376679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heating patterns produced by 434 MHz erbotherm UHF 69.
    Paliwal BR; Cardozo C; Jafari F; Hanson J; Caldwell W
    Radiology; 1980 May; 135(2):511-2. PubMed ID: 7367648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.