These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1753912)

  • 1. Tests of an electron monitor for routine quality control measurements of electron energies.
    Ramsay EB; Reinstein LE; Meek AG
    Med Phys; 1991; 18(6):1247-50. PubMed ID: 1753912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators.
    Chida K; Saito H; Takai Y; Zuguchi M; Mitsuya M; Sakakida H; Kohzuki M; Yamada S
    Tohoku J Exp Med; 2002 Nov; 198(3):197-201. PubMed ID: 12597247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron beam energy QA - a note on measurement tolerances.
    Meyer J; Nyflot MJ; Smith WP; Wottoon LS; Young L; Yang F; Kim M; Hendrickson KR; Ford E; Kalet AM; Cao N; Dempsey C; Sandison GA
    J Appl Clin Med Phys; 2016 Mar; 17(2):249-257. PubMed ID: 27074488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculated absorbed-dose ratios, TG51/TG21, for most widely used cylindrical and parallel-plate ion chambers over a range of photon and electron energies.
    Tailor RC; Hanson WF
    Med Phys; 2002 Jul; 29(7):1464-72. PubMed ID: 12148727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of high-energy photon and electron beams for radiotherapy using AAPM 1983 and IAEA 1987 dosimetry protocols.
    Huq MS; Agostinelli AG; Nath R
    Med Phys; 1993; 20(2 Pt 1):293-8. PubMed ID: 8497213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recommendations for clinical electron beam dosimetry: supplement to the recommendations of Task Group 25.
    Gerbi BJ; Antolak JA; Deibel FC; Followill DS; Herman MG; Higgins PD; Huq MS; Mihailidis DN; Yorke ED; Hogstrom KR; Khan FM
    Med Phys; 2009 Jul; 36(7):3239-79. PubMed ID: 19673223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mean energy, energy-range relationships and depth-scaling factors for clinical electron beams.
    Ding GX; Rogers DW
    Med Phys; 1996 Mar; 23(3):361-76. PubMed ID: 8815379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of stopping-power ratios using realistic clinical electron beams.
    Ding GX; Rogers DW; Mackie TR
    Med Phys; 1995 May; 22(5):489-501. PubMed ID: 7643785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron energy constancy verification using a double-wedge phantom.
    Wells DM; Picco PJ; Ansbacher W
    J Appl Clin Med Phys; 2003; 4(3):204-8. PubMed ID: 12841790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calibration of a proton beam energy monitor.
    Moyers MF; Coutrakon GB; Ghebremedhin A; Shahnazi K; Koss P; Sanders E
    Med Phys; 2007 Jun; 34(6):1952-66. PubMed ID: 17654898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A scintillating fiber beam-energy monitor for electron beam therapy.
    Aoyama T; Maekoshi H; Tsuzaka M; Koyama S
    Med Phys; 1995 Dec; 22(12):2101-2. PubMed ID: 8746717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of an extra-focal electron source to model collimator-scattered electrons using the pencil-beam redefinition algorithm.
    Boyd RA; Hogstrom KR; White RA; Antolak JA
    Med Phys; 2002 Nov; 29(11):2571-83. PubMed ID: 12462724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK; Biggs PJ
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total skin electron therapy at two energies on a linear accelerator.
    Turner JR; Hugtenburg RP; Wynne CJ
    Australas Phys Eng Sci Med; 1995 Dec; 18(4):208-20. PubMed ID: 8867391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the AAPM "Protocol for the determination of absorbed dose from high-energy photon and electron beams" with currently used protocols.
    Hunt MA; Malik S; Thomason C; Masterson ME
    Med Phys; 1984; 11(6):806-13. PubMed ID: 6439991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reference dosimetry in clinical high-energy electron beams: comparison of the AAPM TG-51 and AAPM TG-21 dosimetry protocols.
    Saiful Huq M; Song H; Andreo P; Houser CJ
    Med Phys; 2001 Oct; 28(10):2077-87. PubMed ID: 11695769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental investigation of the implementation of Fermi-Eyges-Hogstrom electron beam model of the Pinnacle3 system at extended SSDs.
    Al-Ghazi M; Sehgal V; Sanford R; Chung H
    Med Dosim; 2007; 32(3):200-3. PubMed ID: 17707200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IORT apparatus design improvement through the evaluation of electron spectral distributions using Monte Carlo methods.
    Price RA; Ayyangar KM
    Med Phys; 2000 Jan; 27(1):215-20. PubMed ID: 10659759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.