These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17539517)

  • 1. Characterizing dissolved Cu and Cd uptake in terms of the biotic ligand and biodynamics using enriched stable isotopes.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2007 May; 41(9):3140-5. PubMed ID: 17539517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biodynamic understanding of dietborne metal uptake by a freshwater invertebrate.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2008 Mar; 42(5):1801-6. PubMed ID: 18441838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.
    Gao Y; Feng J; Han F; Zhu L
    Environ Pollut; 2016 Jun; 213():16-29. PubMed ID: 26874871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies.
    Cain D; Croteau MN; Luoma S
    Environ Toxicol Chem; 2011 Nov; 30(11):2532-41. PubMed ID: 21898563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biodynamic model predicting copper and cadmium bioaccumulation in caddisflies: Linkages between field studies and laboratory exposures.
    Hornberger MI
    PLoS One; 2024; 19(2):e0297801. PubMed ID: 38386678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using the Biotic Ligand Model framework to investigate binary metal interactions on the uptake of Ag, Cd, Cu, Ni, Pb and Zn in the freshwater snail Lymnaea stagnalis.
    Crémazy A; Brix KV; Wood CM
    Sci Total Environ; 2019 Jan; 647():1611-1625. PubMed ID: 30180365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals.
    Niyogi S; Wood CM
    Environ Sci Technol; 2004 Dec; 38(23):6177-92. PubMed ID: 15597870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting dietborne metal toxicity from metal influxes.
    Croteau MN; Luoma SN
    Environ Sci Technol; 2009 Jul; 43(13):4915-21. PubMed ID: 19673285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential marker enzymes and metal-metal interactions in Helisoma duryi and Lymnaea natalensis exposed to cadmium.
    Masola B; Chibi M; Kandare E; Naik YS; Zaranyika MF
    Ecotoxicol Environ Saf; 2008 May; 70(1):79-87. PubMed ID: 17919723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioaccumulation and toxicity of copper in outdoor freshwater microcosms.
    Hoang TC; Pryor RL; Rand GM; Frakes RA
    Ecotoxicol Environ Saf; 2011 May; 74(4):1011-20. PubMed ID: 21345490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable metal isotopes reveal copper accumulation and loss dynamics in the freshwater bivalve Corbicula.
    Croteau MN; Luoma SN; Topping BR; Lopez CB
    Environ Sci Technol; 2004 Oct; 38(19):5002-9. PubMed ID: 15506192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magna.
    Yu RQ; Wang WX
    Environ Toxicol Chem; 2002 Nov; 21(11):2348-55. PubMed ID: 12389913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): how useful are hardness-modified copper guidelines for protecting freshwater biota?
    Markich SJ; King AR; Wilson SP
    Chemosphere; 2006 Dec; 65(10):1791-800. PubMed ID: 16735056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes.
    Komjarova I; Blust R
    Aquat Toxicol; 2009 Aug; 94(2):81-6. PubMed ID: 19608285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why is metal bioaccumulation so variable? Biodynamics as a unifying concept.
    Luoma SN; Rainbow PS
    Environ Sci Technol; 2005 Apr; 39(7):1921-31. PubMed ID: 15871220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of acclimation and cross-acclimation of metals on acute Cd toxicity and Cd uptake and distribution in rainbow trout (Oncorhynchus mykiss).
    McGeer JC; Nadella S; Alsop DH; Hollis L; Taylor LN; McDonald DG; Wood CM
    Aquat Toxicol; 2007 Aug; 84(2):190-7. PubMed ID: 17673308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying diet-borne metal uptake in Gammarus pulex using stable isotope tracers.
    Pellet B; Ayrault S; Tusseau-Vuillemin MH; Gourlay-Francé C
    Ecotoxicol Environ Saf; 2014 Dec; 110():182-9. PubMed ID: 25244686
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the Biotic Ligand Model relative to other site-specific criteria derivation methods for copper in surface waters with elevated hardness.
    Van Genderen E; Gensemer R; Smith C; Santore R; Ryan A
    Aquat Toxicol; 2007 Aug; 84(2):279-91. PubMed ID: 17681387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.