These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 17539539)
21. Permeability of uncharged organic molecules in reverse osmosis desalination membranes. Dražević E; Košutić K; Svalina M; Catalano J Water Res; 2017 Jun; 116():13-22. PubMed ID: 28292676 [TBL] [Abstract][Full Text] [Related]
22. Significance of Co-ion Partitioning in Salt Transport through Polyamide Reverse Osmosis Membranes. Wang L; Cao T; Pataroque KE; Kaneda M; Biesheuvel PM; Elimelech M Environ Sci Technol; 2023 Mar; 57(9):3930-3939. PubMed ID: 36815574 [TBL] [Abstract][Full Text] [Related]
23. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Tang CY; Fu QS; Criddle CS; Leckie JO Environ Sci Technol; 2007 Mar; 41(6):2008-14. PubMed ID: 17410798 [TBL] [Abstract][Full Text] [Related]
24. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure. Ferrer O; Gibert O; Cortina JL Water Res; 2016 Oct; 103():256-263. PubMed ID: 27470468 [TBL] [Abstract][Full Text] [Related]
25. Reverse osmosis membrane rejection for ersatz space mission wastewaters. Yoon Y; Lueptow RM Water Res; 2005 Sep; 39(14):3298-308. PubMed ID: 16005043 [TBL] [Abstract][Full Text] [Related]
26. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Yoon J; Amy G; Chung J; Sohn J; Yoon Y Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331 [TBL] [Abstract][Full Text] [Related]
27. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes. Drazevic E; Bason S; Kosutic K; Freger V Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225 [TBL] [Abstract][Full Text] [Related]
28. Rejection of trace organic compounds by high-pressure membranes. Kim TU; Amy G; Drewes JE Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994 [TBL] [Abstract][Full Text] [Related]
29. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation. Chen SC; Amy GL; Chung TS Water Res; 2016 Jan; 88():144-155. PubMed ID: 26492341 [TBL] [Abstract][Full Text] [Related]
30. A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes. Werber JR; Porter CJ; Elimelech M Environ Sci Technol; 2018 Sep; 52(18):10737-10747. PubMed ID: 30106285 [TBL] [Abstract][Full Text] [Related]
31. A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches. Lau WJ; Gray S; Matsuura T; Emadzadeh D; Chen JP; Ismail AF Water Res; 2015 Sep; 80():306-24. PubMed ID: 26011136 [TBL] [Abstract][Full Text] [Related]
32. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study. Rajendran RM; Garg S; Bajpai S Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270 [TBL] [Abstract][Full Text] [Related]
33. Influence of operating parameters on the arsenic removal by nanofiltration. Figoli A; Cassano A; Criscuoli A; Mozumder MS; Uddin MT; Islam MA; Drioli E Water Res; 2010 Jan; 44(1):97-104. PubMed ID: 19781734 [TBL] [Abstract][Full Text] [Related]
34. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Kheriji J; Tabassi D; Hamrouni B Water Sci Technol; 2015; 72(7):1206-16. PubMed ID: 26398037 [TBL] [Abstract][Full Text] [Related]
35. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Do VT; Tang CY; Reinhard M; Leckie JO Water Res; 2012 Oct; 46(16):5217-23. PubMed ID: 22818949 [TBL] [Abstract][Full Text] [Related]
36. Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Nataraj SK; Hosamani KM; Aminabhavi TM Water Res; 2006 Jul; 40(12):2349-56. PubMed ID: 16757012 [TBL] [Abstract][Full Text] [Related]
37. Membrane technology applied to acid mine drainage from copper mining. Ambiado K; Bustos C; Schwarz A; Bórquez R Water Sci Technol; 2017 Feb; 75(3-4):705-715. PubMed ID: 28192364 [TBL] [Abstract][Full Text] [Related]
38. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes. Lin YL; Chiou JH; Lee CH J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524 [TBL] [Abstract][Full Text] [Related]
39. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater. Gwon EM; Yu MJ; Oh HK; Ylee YH Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302 [TBL] [Abstract][Full Text] [Related]
40. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant. Chon K; Kim SJ; Moon J; Cho J Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]