These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17540072)
21. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO Arnone JA; Zaller JG; Körner C; Ziegler C; Zandt H Oecologia; 1995 Sep; 104(1):72-78. PubMed ID: 28306915 [TBL] [Abstract][Full Text] [Related]
22. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Murray TJ; Tissue DT; Ellsworth DS; Riegler M Oecologia; 2013 Apr; 171(4):1025-35. PubMed ID: 23053228 [TBL] [Abstract][Full Text] [Related]
23. Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Srinivasa Rao M; Manimanjari D; Vanaja M; Rama Rao CA; Srinivas K; Rao VU; Venkateswarlu B J Insect Sci; 2012; 12():103. PubMed ID: 23437971 [TBL] [Abstract][Full Text] [Related]
24. Effect of elevated CO2 on monoterpene emission of young Quercus ilex trees and its relation to structural and ecophysiological parameters. Staudt M; Joffre R; Rambal S; Kesselmeier J Tree Physiol; 2001 May; 21(7):437-45. PubMed ID: 11340044 [TBL] [Abstract][Full Text] [Related]
25. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hübner), fed on cotton bolls under elevated CO2. Wu G; Chen FJ; Sun YC; Ge F J Environ Sci (China); 2007; 19(11):1318-25. PubMed ID: 18232225 [TBL] [Abstract][Full Text] [Related]
26. Effect of elevated atmospheric CO2 concentration on growth and leaf litter decomposition of Quercus acutissima and Fraxinus rhynchophylla. Cha S; Chae HM; Lee SH; Shim JK PLoS One; 2017; 12(2):e0171197. PubMed ID: 28182638 [TBL] [Abstract][Full Text] [Related]
27. Loblolly pine grown under elevated CO Williams RS; Lincoln DE; Thomas RB Oecologia; 1994 Jun; 98(1):64-71. PubMed ID: 28312797 [TBL] [Abstract][Full Text] [Related]
28. Oak genotype and phenolic compounds differently affect the performance of two insect herbivores with contrasting diet breadth. Damestoy T; Brachi B; Moreira X; Jactel H; Plomion C; Castagneyrol B Tree Physiol; 2019 Apr; 39(4):615-627. PubMed ID: 30668790 [TBL] [Abstract][Full Text] [Related]
29. Leaf Dynamics of Panicum maximum under Future Climatic Changes. Britto de Assis Prado CH; Haik Guedes de Camargo-Bortolin L; Castro É; Martinez CA PLoS One; 2016; 11(2):e0149620. PubMed ID: 26894932 [TBL] [Abstract][Full Text] [Related]
30. Effects of Elevated CO2 on Plant Chemistry, Growth, Yield of Resistant Soybean, and Feeding of a Target Lepidoptera Pest, Spodoptera litura (Lepidoptera: Noctuidae). Yifei Z; Yang D; Guijun W; Bin L; Guangnan X; Fajun C Environ Entomol; 2018 Aug; 47(4):848-856. PubMed ID: 29701817 [TBL] [Abstract][Full Text] [Related]
32. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO Gherlenda AN; Moore BD; Haigh AM; Johnson SN; Riegler M BMC Ecol; 2016 Oct; 16(1):47. PubMed ID: 27760541 [TBL] [Abstract][Full Text] [Related]
33. Temperature and food quality effects on growth, consumption and post-ingestive utilization efficiencies of the forest tent caterpillar Malacosoma disstria (Lepidoptera: Lasiocampidae). Levesque KR; Levesque KR; Fortin M; Mauffette Y Bull Entomol Res; 2002 Apr; 92(2):127-36. PubMed ID: 12020370 [TBL] [Abstract][Full Text] [Related]
34. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus). O'Neill BF; Zangerl AR; Dermody O; Bilgin DD; Casteel CL; Zavala JA; DeLucia EH; Berenbaum MR J Chem Ecol; 2010 Jan; 36(1):35-45. PubMed ID: 20077130 [TBL] [Abstract][Full Text] [Related]
35. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Zavala JA; Casteel CL; Nabity PD; Berenbaum MR; DeLucia EH Oecologia; 2009 Aug; 161(1):35-41. PubMed ID: 19418071 [TBL] [Abstract][Full Text] [Related]
36. Leaf respiration at different canopy positions in sweetgum (Liquidambar styraciflua) grown in ambient and elevated concentrations of carbon dioxide in the field. Tissue DT; Lewis JD; Wullschleger SD; Amthor JS; Griffin KL; Anderson OR Tree Physiol; 2002 Nov; 22(15-16):1157-66. PubMed ID: 12414375 [TBL] [Abstract][Full Text] [Related]
37. Olfactory preferences of Popillia japonica, Vanessa cardui, and Aphis glycines for Glycine max grown under elevated CO2. O'Neill BF; Zangerl AR; Delucia EH; Berenbaum MR Environ Entomol; 2010 Aug; 39(4):1291-301. PubMed ID: 22127180 [TBL] [Abstract][Full Text] [Related]
38. The effects of leaf quality on herbivore performance and attack from natural enemies. Lill JT; Marquis RJ Oecologia; 2001 Feb; 126(3):418-428. PubMed ID: 28547457 [TBL] [Abstract][Full Text] [Related]
39. Canopy leaf area of a mature evergreen Eucalyptus woodland does not respond to elevated atmospheric [CO2] but tracks water availability. Duursma RA; Gimeno TE; Boer MM; Crous KY; Tjoelker MG; Ellsworth DS Glob Chang Biol; 2016 Apr; 22(4):1666-76. PubMed ID: 26546378 [TBL] [Abstract][Full Text] [Related]
40. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Kopper BJ; Lindroth RL Oecologia; 2003 Jan; 134(1):95-103. PubMed ID: 12647186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]