These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17540118)

  • 21. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.
    Moshaverinia A; Roohpour N; Darr JA; Rehman IU
    Acta Biomater; 2009 Jun; 5(5):1656-62. PubMed ID: 19269267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour.
    Salih V; Mordan N; Abou Neel EA; Armitage DA; Jones FH; Knowles JC; Nazhat SN; Vargas-Coronado R; Cauich-Rodriguez JV
    Acta Biomater; 2006 Mar; 2(2):143-54. PubMed ID: 16701872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of airborne-particle abrasion on mechanical properties and bond strength of carbon/epoxy and glass/bis-GMA fiber-reinforced resin posts.
    Soares CJ; Santana FR; Pereira JC; Araujo TS; Menezes MS
    J Prosthet Dent; 2008 Jun; 99(6):444-54. PubMed ID: 18514666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and characterization of a novel N-vinylcaprolactam-containing acrylic acid terpolymer for applications in glass-ionomer dental cements.
    Moshaverinia A; Roohpour N; Darr JA; Rehman IU
    Acta Biomater; 2009 Jul; 5(6):2101-8. PubMed ID: 19289308
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of new bone cement utilizing low toxicity monomers.
    Ono S; Kadoma Y; Morita S; Takakuda K
    J Med Dent Sci; 2008 Jun; 55(2):189-96. PubMed ID: 19697507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of cross-linked PMMA beads on the mechanical behavior of self-curing acrylic cements.
    Vallo CI; Abraham GA; Cuadrado TR; San Román J
    J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):407-16. PubMed ID: 15264326
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of oligo(ethylene glycol) dimethacrylates effects on the properties of new biodegradable bone cement compositions.
    Lukaszczyk J; Rmiga M; Jaszcz K; Adler HJ; Jähne E; Kaczmarek M
    Macromol Biosci; 2005 Jan; 5(1):64-9. PubMed ID: 15635717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators.
    Deb S; Lewis G; Janna SW; Vazquez B; San Roman J
    J Biomed Mater Res A; 2003 Nov; 67(2):571-7. PubMed ID: 14566799
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of antibiotics on the properties of poly(methylmethacrylate)-based bone cement.
    He Y; Trotignon JP; Loty B; Tcharkhtchi A; Verdu J
    J Biomed Mater Res; 2002; 63(6):800-6. PubMed ID: 12418027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of thermal cycling on flexural properties of carbon-graphite fiber-reinforced polymers.
    Segerström S; Ruyter IE
    Dent Mater; 2009 Jul; 25(7):845-51. PubMed ID: 19230964
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.
    Kotha SP; Lieberman M; Vickers A; Schmid SR; Mason JJ
    J Biomed Mater Res A; 2006 Jan; 76(1):111-9. PubMed ID: 16224777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dependence of curing time, peak temperature, and mechanical properties on the composition of bone cement.
    Brauer GM; Steinberger DR; Stansbury JW
    J Biomed Mater Res; 1986; 20(6):839-52. PubMed ID: 3722218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement.
    Roether JA; Deb S
    J Mater Sci Mater Med; 2004 Apr; 15(4):413-8. PubMed ID: 15332609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction of gelatin microspheres into an injectable calcium phosphate cement.
    Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticulate fillers improve the mechanical strength of bone cement.
    Gomoll AH; Fitz W; Scott RD; Thornhill TS; Bellare A
    Acta Orthop; 2008 Jun; 79(3):421-7. PubMed ID: 18622848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A study of the interface between bone and acrylic cement by scanning electron microscopy.
    Spinelli R
    Ital J Orthop Traumatol; 1976 Apr; 2(1):103-15. PubMed ID: 977313
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microtomography assessment of failure in acrylic bone cement.
    Sinnett-Jones PE; Browne M; Ludwig W; Buffière JY; Sinclair I
    Biomaterials; 2005 Nov; 26(33):6460-6. PubMed ID: 15967499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A highly radiopaque vertebroplasty cement using tetraiodinated o-carborane additive.
    Pepiol A; Teixidor F; Saralidze K; van der Marel C; Willems P; Voss L; Knetsch ML; Vinas C; Koole LH
    Biomaterials; 2011 Sep; 32(27):6389-98. PubMed ID: 21669456
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films.
    Jansen B; Ellinghorst G
    J Biomed Mater Res; 1985; 19(9):1085-99. PubMed ID: 4086492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel amino acid modified zinc polycarboxylates for improved dental cements.
    Xie D; Faddah M; Park JG
    Dent Mater; 2005 Aug; 21(8):739-48. PubMed ID: 15882900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.