BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17540765)

  • 21. Regulation of neuroendocrine exocytosis by the ARF6 GTPase-activating protein GIT1.
    Meyer MZ; Déliot N; Chasserot-Golaz S; Premont RT; Bader MF; Vitale N
    J Biol Chem; 2006 Mar; 281(12):7919-26. PubMed ID: 16439353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis.
    Corrotte M; Chasserot-Golaz S; Huang P; Du G; Ktistakis NT; Frohman MA; Vitale N; Bader MF; Grant NJ
    Traffic; 2006 Mar; 7(3):365-77. PubMed ID: 16497229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phospholipase D1 regulates secretagogue-stimulated insulin release in pancreatic beta-cells.
    Hughes WE; Elgundi Z; Huang P; Frohman MA; Biden TJ
    J Biol Chem; 2004 Jun; 279(26):27534-41. PubMed ID: 15087463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Role of Phospholipase D in Regulated Exocytosis.
    Rogasevskaia TP; Coorssen JR
    J Biol Chem; 2015 Nov; 290(48):28683-96. PubMed ID: 26433011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nerve growth factor-dependent sorting of synaptotagmin IV protein to mature dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells.
    Fukuda M; Kanno E; Ogata Y; Saegusa C; Kim T; Loh YP; Yamamoto A
    J Biol Chem; 2003 Jan; 278(5):3220-6. PubMed ID: 12446703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Annexin A2, an essential partner of the exocytotic process in chromaffin cells.
    Gabel M; Chasserot-Golaz S
    J Neurochem; 2016 Jun; 137(6):890-6. PubMed ID: 27037794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis.
    Choi SY; Huang P; Jenkins GM; Chan DC; Schiller J; Frohman MA
    Nat Cell Biol; 2006 Nov; 8(11):1255-62. PubMed ID: 17028579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that the ability to respond to a calcium stimulus in exocytosis is determined by the secretory granule membrane: comparison of exocytosis of injected bovine chromaffin granule membranes and endogenous cortical granules in Xenopus laevis oocytes.
    Scheuner D; Holz RW
    Cell Mol Neurobiol; 1994 Jun; 14(3):245-57. PubMed ID: 7712514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism.
    Alés E; Tabares L; Poyato JM; Valero V; Lindau M; Alvarez de Toledo G
    Nat Cell Biol; 1999 May; 1(1):40-4. PubMed ID: 10559862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells.
    Choi WS; Kim YM; Combs C; Frohman MA; Beaven MA
    J Immunol; 2002 Jun; 168(11):5682-9. PubMed ID: 12023367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D.
    Caumont AS; Galas MC; Vitale N; Aunis D; Bader MF
    J Biol Chem; 1998 Jan; 273(3):1373-9. PubMed ID: 9430671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Insight in the exocytotic process in chromaffin cells: regulation by trimeric and monomeric G proteins.
    Vitale N; Gasman S; Caumont AS; Gensse M; Galas MC; Chasserot-Golaz S; Bader MF
    Biochimie; 2000 Apr; 82(4):365-73. PubMed ID: 10865124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Bacterial toxins: useful for studying G-proteins implicated in the mechanism of exocytosis in neuroendocrine cells].
    Gasman S; Chasserot-Golaz S; Vitale N; Bader MF
    J Soc Biol; 1999; 193(6):451-6. PubMed ID: 10783703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A dual role for diacylglycerol kinase generated phosphatidic acid in autoantibody-induced neutrophil exocytosis.
    Holden NJ; Savage CO; Young SP; Wakelam MJ; Harper L; Williams JM
    Mol Med; 2011; 17(11-12):1242-52. PubMed ID: 21833457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca(2+)-independent fusion of secretory granules with phospholipase A2-treated plasma membranes in vitro.
    Nagao T; Kubo T; Fujimoto R; Nishio H; Takeuchi T; Hata F
    Biochem J; 1995 Apr; 307 ( Pt 2)(Pt 2):563-9. PubMed ID: 7537492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protocol for electron microscopy ultrastructural localization of the fusogenic lipid phosphatidic acid on plasma membrane sheets from chromaffin cells.
    Tanguy E; Thahouly T; Royer C; Demais V; Gasman S; Chasserot-Golaz S; Vitale N
    STAR Protoc; 2021 Jun; 2(2):100464. PubMed ID: 33912850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exocytosis from rat submandibular granular tubules during cyclocytidine stimulation shows unusual features, including changes in the granule membrane.
    Thomopoulos GN; Garrett JR; Proctor GB; Hartley R; Zhang XS
    Microsc Res Tech; 1996 Dec; 35(5):365-76. PubMed ID: 8989766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments.
    Gasman S; Chasserot-Golaz S; Malacombe M; Way M; Bader MF
    Mol Biol Cell; 2004 Feb; 15(2):520-31. PubMed ID: 14617808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic diversity in the fusion of exocytotic vesicles.
    Ninomiya Y; Kishimoto T; Yamazawa T; Ikeda H; Miyashita Y; Kasai H
    EMBO J; 1997 Mar; 16(5):929-34. PubMed ID: 9118954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.