BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1823 related articles for article (PubMed ID: 17540862)

  • 1. Genome-wide mapping of in vivo protein-DNA interactions.
    Johnson DS; Mortazavi A; Myers RM; Wold B
    Science; 2007 Jun; 316(5830):1497-502. PubMed ID: 17540862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes.
    Bruce AW; Donaldson IJ; Wood IC; Yerbury SA; Sadowski MI; Chapman M; Göttgens B; Buckley NJ
    Proc Natl Acad Sci U S A; 2004 Jul; 101(28):10458-63. PubMed ID: 15240883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping DNA-protein interactions in large genomes by sequence tag analysis of genomic enrichment.
    Kim J; Bhinge AA; Morgan XC; Iyer VR
    Nat Methods; 2005 Jan; 2(1):47-53. PubMed ID: 15782160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of four novel peptide motifs that recognize distinct regions of the transcription factor CP2.
    Kang HC; Chung BM; Chae JH; Yang SI; Kim CG; Kim CG
    FEBS J; 2005 Mar; 272(5):1265-77. PubMed ID: 15720400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct interaction of NRSF with TBP: chromatin reorganization and core promoter repression for neuron-specific gene transcription.
    Murai K; Naruse Y; Shaul Y; Agata Y; Mori N
    Nucleic Acids Res; 2004; 32(10):3180-9. PubMed ID: 15197246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular biology. Site-seeing by sequencing.
    Fields S
    Science; 2007 Jun; 316(5830):1441-2. PubMed ID: 17556576
    [No Abstract]   [Full Text] [Related]  

  • 7. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the vertebrate gene regulatory network controlled by the transcriptional repressor REST.
    Johnson R; Samuel J; Ng CK; Jauch R; Stanton LW; Wood IC
    Mol Biol Evol; 2009 Jul; 26(7):1491-507. PubMed ID: 19318521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative evaluation of protein-DNA interactions using an optimized knowledge-based potential.
    Liu Z; Mao F; Guo JT; Yan B; Wang P; Qu Y; Xu Y
    Nucleic Acids Res; 2005; 33(2):546-58. PubMed ID: 15673715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcription of the chicken Grin1 gene is regulated by the activity of SP3 and NRSF in undifferentiated cells and neurons.
    Moreno-González G; López-Colomé AM; Rodríguez G; Zarain-Herzberg A
    Biosci Rep; 2008 Aug; 28(4):177-88. PubMed ID: 18557703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcriptional regulatory code of eukaryotic cells--insights from genome-wide analysis of chromatin organization and transcription factor binding.
    Barrera LO; Ren B
    Curr Opin Cell Biol; 2006 Jun; 18(3):291-8. PubMed ID: 16647254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors.
    Muiño JM; Angenent GC; Kaufmann K
    Methods Mol Biol; 2011; 754():293-305. PubMed ID: 21720960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring direct regulatory targets of a transcription factor in the DREAM2 challenge.
    Vega VB; Woo XY; Hamidi H; Yeo HC; Yeo ZX; Bourque G; Clarke ND
    Ann N Y Acad Sci; 2009 Mar; 1158():215-23. PubMed ID: 19348643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in analysis of transcriptional regulatory networks.
    Kim TM; Park PJ
    Wiley Interdiscip Rev Syst Biol Med; 2011; 3(1):21-35. PubMed ID: 21069662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GRASP-DNA: a web application to screen prokaryotic genomes for specific DNA-binding sites and repeat motifs.
    Schilling CH; Held L; Torre M; Saier MH
    J Mol Microbiol Biotechnol; 2000 Oct; 2(4):495-500. PubMed ID: 11075923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZNF569, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway.
    Huang X; Yuan W; Huang W; Bai Y; Deng Y; Zhu C; Liang P; Li Y; Du X; Liu M; Wang Y; Wu X
    Biochem Biophys Res Commun; 2006 Aug; 346(3):621-8. PubMed ID: 16793018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing transcription factor motif drift from noisy decoy sequences.
    Reddy TE; DeLisi C; Shakhnovich BE
    Genome Inform; 2005; 16(1):59-67. PubMed ID: 16362907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The zinc finger repressor, ZBP-89, recruits histone deacetylase 1 to repress vimentin gene expression.
    Wu Y; Zhang X; Salmon M; Zehner ZE
    Genes Cells; 2007 Aug; 12(8):905-18. PubMed ID: 17663720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomics reveals unusually long motifs in mammalian genomes.
    Jones NC; Pevzner PA
    Bioinformatics; 2006 Jul; 22(14):e236-42. PubMed ID: 16873477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding sites for metabolic disease related transcription factors inferred at base pair resolution by chromatin immunoprecipitation and genomic microarrays.
    Rada-Iglesias A; Wallerman O; Koch C; Ameur A; Enroth S; Clelland G; Wester K; Wilcox S; Dovey OM; Ellis PD; Wraight VL; James K; Andrews R; Langford C; Dhami P; Carter N; Vetrie D; Pontén F; Komorowski J; Dunham I; Wadelius C
    Hum Mol Genet; 2005 Nov; 14(22):3435-47. PubMed ID: 16221759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 92.