BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 17540897)

  • 1. Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia.
    Giraud E; Moulin L; Vallenet D; Barbe V; Cytryn E; Avarre JC; Jaubert M; Simon D; Cartieaux F; Prin Y; Bena G; Hannibal L; Fardoux J; Kojadinovic M; Vuillet L; Lajus A; Cruveiller S; Rouy Z; Mangenot S; Segurens B; Dossat C; Franck WL; Chang WS; Saunders E; Bruce D; Richardson P; Normand P; Dreyfus B; Pignol D; Stacey G; Emerich D; Verméglio A; Médigue C; Sadowsky M
    Science; 2007 Jun; 316(5829):1307-12. PubMed ID: 17540897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant science. Infectious heresy.
    Downie JA
    Science; 2007 Jun; 316(5829):1296-7. PubMed ID: 17540893
    [No Abstract]   [Full Text] [Related]  

  • 3. Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene legumes.
    Podlešáková K; Fardoux J; Patrel D; Bonaldi K; Novák O; Strnad M; Giraud E; Spíchal L; Nouwen N
    Mol Plant Microbe Interact; 2013 Oct; 26(10):1232-8. PubMed ID: 23777431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic Bradyrhizobium Sp. strain ORS285 synthesizes 2-O-methylfucosylated lipochitooligosaccharides for nod gene-dependent interaction with Aeschynomene plants.
    Renier A; Maillet F; Fardoux J; Poinsot V; Giraud E; Nouwen N
    Mol Plant Microbe Interact; 2011 Dec; 24(12):1440-7. PubMed ID: 21864045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomic approach of bradyrhizobium/aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis.
    Delmotte N; Mondy S; Alunni B; Fardoux J; Chaintreuil C; Vorholt JA; Giraud E; Gourion B
    Int J Mol Sci; 2014 Feb; 15(3):3660-70. PubMed ID: 24590127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale transposon mutagenesis of photosynthetic Bradyrhizobium sp. strain ORS278 reveals new genetic loci putatively important for nod-independent symbiosis with Aeschynomene indica.
    Bonaldi K; Gourion B; Fardoux J; Hannibal L; Cartieaux F; Boursot M; Vallenet D; Chaintreuil C; Prin Y; Nouwen N; Giraud E
    Mol Plant Microbe Interact; 2010 Jun; 23(6):760-70. PubMed ID: 20459315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia.
    Kalita M; Stepkowski T; Łotocka B; Małek W
    Arch Microbiol; 2006 Aug; 186(2):87-97. PubMed ID: 16802175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis.
    Fauvart M; Michiels J
    FEMS Microbiol Lett; 2008 Aug; 285(1):1-9. PubMed ID: 18616593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signalling in symbiotic root nodule formation.
    van de Sande K; Bisseling T
    Essays Biochem; 1997; 32():127-42. PubMed ID: 9493016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nod genes and Nod signals and the evolution of the Rhizobium legume symbiosis.
    Debellé F; Moulin L; Mangin B; Dénarié J; Boivin C
    Acta Biochim Pol; 2001; 48(2):359-65. PubMed ID: 11732607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes?
    Masson-Boivin C; Giraud E; Perret X; Batut J
    Trends Microbiol; 2009 Oct; 17(10):458-66. PubMed ID: 19766492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus.
    Moulin L; Béna G; Boivin-Masson C; Stepkowski T
    Mol Phylogenet Evol; 2004 Mar; 30(3):720-32. PubMed ID: 15012950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of Bradyrhizobium-Aeschynomene mutualism: living testimony of the ancient world or highly evolved state?
    Okubo T; Fukushima S; Minamisawa K
    Plant Cell Physiol; 2012 Dec; 53(12):2000-7. PubMed ID: 23161855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal.
    Gueye F; Moulin L; Sylla S; Ndoye I; Béna G
    Syst Appl Microbiol; 2009 Sep; 32(6):387-99. PubMed ID: 19493641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome analysis suggests that the soil oligotrophic bacterium Agromonas oligotrophica (Bradyrhizobium oligotrophicum) is a nitrogen-fixing symbiont of Aeschynomene indica.
    Okubo T; Fukushima S; Itakura M; Oshima K; Longtonglang A; Teaumroong N; Mitsui H; Hattori M; Hattori R; Hattori T; Minamisawa K
    Appl Environ Microbiol; 2013 Apr; 79(8):2542-51. PubMed ID: 23396330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical-ecological-climatic regions of India are nodulated by Bradyrhizobium yuanmingense.
    Appunu C; N'Zoue A; Moulin L; Depret G; Laguerre G
    Syst Appl Microbiol; 2009 Oct; 32(7):460-70. PubMed ID: 19541444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NodD1 and NodD2 Are Not Required for the Symbiotic Interaction of Bradyrhizobium ORS285 with Nod-Factor-Independent Aeschynomene Legumes.
    Nouwen N; Fardoux J; Giraud E
    PLoS One; 2016; 11(6):e0157888. PubMed ID: 27315080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizobial Nod factors are required for cortical cell division in the nodule morphogenetic programme of the Aeschynomeneae legume Arachis.
    Ibáñez F; Fabra A
    Plant Biol (Stuttg); 2011 Sep; 13(5):794-800. PubMed ID: 21815984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics and functional genomics of legume nodulation.
    Stacey G; Libault M; Brechenmacher L; Wan J; May GD
    Curr Opin Plant Biol; 2006 Apr; 9(2):110-21. PubMed ID: 16458572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes.
    Ané JM; Kiss GB; Riely BK; Penmetsa RV; Oldroyd GE; Ayax C; Lévy J; Debellé F; Baek JM; Kalo P; Rosenberg C; Roe BA; Long SR; Dénarié J; Cook DR
    Science; 2004 Feb; 303(5662):1364-7. PubMed ID: 14963334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.