These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

55 related articles for article (PubMed ID: 175412)

  • 1. Dependence of myocardial redox systems on the concentration of exogenous substrate.
    Moravec J; Corsin A; Hatt PY
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():167-77. PubMed ID: 175412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-linked adjustment of myocardial metabolism to changing mechanical demands in the isolated rat heart.
    Rubányi G; Kovách AG
    Acta Physiol Acad Sci Hung; 1980; 55(4):335-43. PubMed ID: 7468250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The existence of a lysosomal redox chain and the role of ubiquinone.
    Gille L; Nohl H
    Arch Biochem Biophys; 2000 Mar; 375(2):347-54. PubMed ID: 10700391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of increased mechanical work by isolated perfused rat heart during production or uptake of ketone bodies. Assessment of mitochondrial oxidized to reduced free nicotinamide-adenine dinucleotide ratios and oxaloacetate concentrations.
    Opie LH; Owen P
    Biochem J; 1975 Jun; 148(3):403-15. PubMed ID: 173281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial oxygen demand and redox state affect fatty acid oxidation in the potassium-arrested heart.
    Peltz M; He TT; Adams GA; Chao RY; Jessen ME
    Surgery; 2004 Aug; 136(2):150-9. PubMed ID: 15300174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the redox state of NAD-NADH systems in guinea pig liver under different experimental conditions.
    Willms B; Kleineke J; Söling HD
    Hoppe Seylers Z Physiol Chem; 1970 Mar; 351(3):287-8. PubMed ID: 4316048
    [No Abstract]   [Full Text] [Related]  

  • 7. [Oxidative-reductive conversions of nicotinamide adenine dinulceotide in skeletal muscles during work and rest].
    Chagovets NR; Leshkevich LG
    Vopr Med Khim; 1974; 20(4):425-30. PubMed ID: 4376883
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection.
    Ala-Rämi A; Ylihautala M; Ingman P; Hassinen IE
    Metabolism; 2005 Mar; 54(3):410-20. PubMed ID: 15736122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state.
    Schönfeld P; Bohnensack R; Böhme G; Kunz W
    Biomed Biochim Acta; 1983; 42(1):3-13. PubMed ID: 6309158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of citric acid cycle activity with electron transport flux.
    Williamson JR; Ford C; Illingworth J; Safer B
    Circ Res; 1976 May; 38(5 Suppl 1):I39-51. PubMed ID: 1269091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decline or respiratory activity of myocardial mitochondria in senescence.
    Sanadi DR
    Recent Adv Stud Cardiac Struct Metab; 1973; 3():91-6. PubMed ID: 4377611
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial-cytosolic interactions in cardiac tissue: role of the malate-aspartate cycle in the removal of glycolytic NADH from the cytosol.
    Williamson JR; Safer B; LaNoue KF; Smith CM; Walajtys E
    Symp Soc Exp Biol; 1973; 27():241-81. PubMed ID: 4358367
    [No Abstract]   [Full Text] [Related]  

  • 13. Respiratory control in isolated perfused rat heart. Role of the equilibrium relations between the mitochondrial electron carriers and the adenylate system.
    Hassinen IE; Hiltunen K
    Biochim Biophys Acta; 1975 Dec; 408(3):319-30. PubMed ID: 172132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial-cytoplasmic redox exchanges in acute, brief hypoxia.
    Sylvia AL; Lai FM; Shen AL; Miller AT
    Comp Biochem Physiol A Comp Physiol; 1975 Apr; 50(4):739-41. PubMed ID: 236133
    [No Abstract]   [Full Text] [Related]  

  • 15. Myocardial energy metabolism.
    Opie LH
    Adv Cardiol; 1974; 12(0):70-83. PubMed ID: 4365502
    [No Abstract]   [Full Text] [Related]  

  • 16. Proceedings: Cytoplasmic and mitochondrial redox state of free nicotinamide-adenide-adenine dinucleotide in rat striated muscle.
    Splain DJ; Crawford J; Markus HB
    J Am Osteopath Assoc; 1975 Dec; 75(4):434-7. PubMed ID: 175112
    [No Abstract]   [Full Text] [Related]  

  • 17. Computer simulation of rat heart metabolism after adding glucose to the perfusate.
    Achs MJ; Garfinkel D
    Am J Physiol; 1977 May; 232(5):R175-84. PubMed ID: 16503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in mitochondrial redox state following an oral glucose load.
    Kimura K; Ukikusa M; Ozawa K; Tobe T
    Acta Diabetol Lat; 1978; 15(5-6):283-6. PubMed ID: 219651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of redox potential on protein degradation in perfused rat heart.
    Chua BH; Kleinhans BJ
    Am J Physiol; 1985 Jun; 248(6 Pt 1):E726-31. PubMed ID: 3890558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic interrelations of substrates, pH, and oxygen in perfused rabbit heart.
    Whereat AF; Nelson J
    Am J Physiol; 1974 Jun; 226(6):1309-14. PubMed ID: 4833989
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.