These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 17541721)

  • 41. Cross-pollination between genetically modified and conventional oilseed rape fields.
    Degrieck I; Van Bockstaele E; De Loose M
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt B):385-8. PubMed ID: 24757775
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantifying the introgressive hybridisation propensity between transgenic oilseed rape and its wild/weedy relatives.
    Devos Y; De Schrijver A; Reheul D
    Environ Monit Assess; 2009 Feb; 149(1-4):303-22. PubMed ID: 18253849
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.
    Bailleul D; Ollier S; Lecomte J
    PLoS One; 2016; 11(6):e0158403. PubMed ID: 27359342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees.
    Mohr KI; Tebbe CC
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):573-82. PubMed ID: 17273854
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina.
    Pandolfo CE; Presotto A; Carbonell FT; Ureta S; Poverene M; Cantamutto M
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):6251-6264. PubMed ID: 29243152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Herbicide-resistant crops and weed resistance to herbicides.
    Owen MD; Zelaya IA
    Pest Manag Sci; 2005 Mar; 61(3):301-11. PubMed ID: 15668920
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Expression of green fluorescent protein in pollen of oilseed rape (Brassica napus L.) and its utility for assessing pollen movement in the field.
    Moon HS; Halfhill MD; Hudson LC; Millwood RJ; Stewart CN
    Biotechnol J; 2006 Oct; 1(10):1147-52. PubMed ID: 17004298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapeseed species and environmental concerns related to loss of seeds of genetically modified oilseed rape in Japan.
    Nishizawa T; Tamaoki M; Aono M; Kubo A; Saji H; Nakajima N
    GM Crops; 2010; 1(3):143-56. PubMed ID: 21844669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pollen-mediated gene flow in wheat (Triticum aestivum L.) in a semiarid field environment in Spain.
    Loureiro I; Escorial MC; González Á; Chueca MC
    Transgenic Res; 2012 Dec; 21(6):1329-39. PubMed ID: 22615061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A model of pollen-mediated gene flow for oilseed rape.
    Walklate PJ; Hunt JC; Higson HL; Sweet JB
    Proc Biol Sci; 2004 Mar; 271(1538):441-9. PubMed ID: 15129952
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides.
    Saji H; Nakajima N; Aono M; Tamaoki M; Kubo A; Wakiyama S; Hatase Y; Nagatsu M
    Environ Biosafety Res; 2005; 4(4):217-22. PubMed ID: 16827549
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Agbiotech. A little pollen goes a long way.
    Stokstad E
    Science; 2002 Jun; 296(5577):2314. PubMed ID: 12089415
    [No Abstract]   [Full Text] [Related]  

  • 53. Weed control changes and genetically modified herbicide tolerant crops in the USA 1996-2012.
    Brookes G
    GM Crops Food; 2014; 5(4):321-32. PubMed ID: 25523177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assessment of potential environmental risks of transgene flow in smallholder farming systems in Asia: Brassica napus as a case study in Korea.
    Zhang CJ; Yook MJ; Park HR; Lim SH; Kim JW; Nah G; Song HR; Jo BH; Roh KH; Park S; Kim DS
    Sci Total Environ; 2018 Nov; 640-641():688-695. PubMed ID: 29870945
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Response of imidazolinone-tolerant and -susceptible volunteer oilseed rape (Brassica napus L.) to ALS inhibitors and alternative herbicides.
    Krato C; Hartung K; Petersen J
    Pest Manag Sci; 2012 Oct; 68(10):1385-92. PubMed ID: 22615271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis.
    Moyes CL; Lilley JM; Casais CA; Cole SG; Haeger PD; Dale PJ
    Mol Ecol; 2002 Jan; 11(1):103-12. PubMed ID: 11903908
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa.
    Ammitzbøll H; Mikkelsen TN; Jørgensen RB
    Environ Biosafety Res; 2005; 4(1):3-12. PubMed ID: 16209132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Competition affects gene flow from oilseed rape (female symbol) to Brassica rapa (male symbol).
    Johannessen MM; Andersen BA; Jørgensen RB
    Heredity (Edinb); 2006 May; 96(5):360-7. PubMed ID: 16508664
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reproductive phenology of transgenic Brassica napus cultivars: Effect on intraspecific gene flow.
    Simard MJ; Légère A; Willenborg CJ
    Environ Biosafety Res; 2009; 8(3):123-31. PubMed ID: 20028614
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fitness and maternal effects in hybrids formed between transgenic oilseed rape (Brassica napus L.) and wild brown mustard [B. juncea (L.) Czern et Coss.] in the field.
    Di K; Stewart CN; Wei W; Shen BC; Tang ZX; Ma KP
    Pest Manag Sci; 2009 Jul; 65(7):753-60. PubMed ID: 19278020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.