These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17541825)

  • 21. An approximate solution to the periodic bidomain equations in one dimension.
    Trayanova N
    Math Biosci; 1994 Apr; 120(2):189-210. PubMed ID: 8204984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributed computing for membrane-based modeling of action potential propagation.
    Porras D; Rogers JM; Smith WM; Pollard AE
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1051-7. PubMed ID: 10943053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inherent speedup limitations in multiple time step/particle mesh Ewald algorithms.
    Barash D; Yang L; Qian X; Schlick T
    J Comput Chem; 2003 Jan; 24(1):77-88. PubMed ID: 12483677
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function.
    Skouibine K; Krassowska W
    Ann Biomed Eng; 2000 Jul; 28(7):772-80. PubMed ID: 11016414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytic solution of the anisotropic bidomain equations for myocardial tissue: the effect of adjoining conductive regions.
    Clements JC; Horácek BM
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1784-8. PubMed ID: 16235664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reliability analysis of cardiac repolarization time markers.
    Scacchi S; Franzone PC; Pavarino LF; Taccardi B
    Math Biosci; 2009 Jun; 219(2):113-28. PubMed ID: 19328815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solving the coupled system improves computational efficiency of the bidomain equations.
    Southern JA; Plank G; Vigmond EJ; Whiteley JP
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2404-12. PubMed ID: 19457741
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptive Mesh Refinement and Adaptive Time Integration for Electrical Wave Propagation on the Purkinje System.
    Ying W; Henriquez CS
    Biomed Res Int; 2015; 2015():137482. PubMed ID: 26581455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method.
    Cherry EM; Greenside HS; Henriquez CS
    Chaos; 2003 Sep; 13(3):853-65. PubMed ID: 12946177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CHASTE: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library.
    Bernabeu MO; Bordas R; Pathmanathan P; Pitt-Francis J; Cooper J; Garny A; Gavaghan DJ; Rodriguez B; Southern JA; Whiteley JP
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1907-30. PubMed ID: 19380318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computationally efficient method for determining the size and location of myocardial ischemia.
    Ruud TS; Nielsen BF; Lysaker M; Sundnes J
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):263-72. PubMed ID: 19342326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A numerical guide to the solution of the bi-domain equations of cardiac electrophysiology.
    Pathmanathan P; Bernabeu MO; Bordas R; Cooper J; Garny A; Pitt-Francis JM; Whiteley JP; Gavaghan DJ
    Prog Biophys Mol Biol; 2010; 102(2-3):136-55. PubMed ID: 20553747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology.
    Heidenreich EA; Ferrero JM; Doblaré M; Rodríguez JF
    Ann Biomed Eng; 2010 Jul; 38(7):2331-45. PubMed ID: 20238165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fully implicit finite element method for bidomain models of cardiac electrophysiology.
    Dal H; Göktepe S; Kaliske M; Kuhl E
    Comput Methods Biomech Biomed Engin; 2012; 15(6):645-56. PubMed ID: 21491253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulations of phase separation dynamics in a water-oil-surfactant system.
    Kim J
    J Colloid Interface Sci; 2006 Nov; 303(1):272-9. PubMed ID: 16890235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical solution of the bidomain equations.
    Linge S; Sundnes J; Hanslien M; Lines GT; Tveito A
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1931-50. PubMed ID: 19380319
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bidomain model with periodic intracellular junctions: a one-dimensional analysis.
    Trayanova N; Pilkington TC
    IEEE Trans Biomed Eng; 1993 May; 40(5):424-33. PubMed ID: 8225331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.