These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17542579)
1. Reduction energy of 1 M aqueous ruthenium(III) hexaammine in the gas phase: a route toward establishing an absolute electrochemical scale. Leib RD; Donald WA; O'Brien JT; Bush MF; Williams ER J Am Chem Soc; 2007 Jun; 129(25):7716-7. PubMed ID: 17542579 [No Abstract] [Full Text] [Related]
2. Voltammetric sensing of phosphoproteins using a gallium(III) acetylacetonate-modified carbon paste electrode. Sugawara K; Yugami A; Kadoya T Anal Sci; 2012; 28(3):251-5. PubMed ID: 22451365 [TBL] [Abstract][Full Text] [Related]
3. Electrochemistry in microscopic domains. 1. The electrochemical cell and its voltammetric and amperometric response. Kashyap R; Gratzl M Anal Chem; 1998 Apr; 70(8):1468-76. PubMed ID: 9569758 [TBL] [Abstract][Full Text] [Related]
4. Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase. Donald WA; Leib RD; O'Brien JT; Bush MF; Williams ER J Am Chem Soc; 2008 Mar; 130(11):3371-81. PubMed ID: 18288835 [TBL] [Abstract][Full Text] [Related]
5. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide--ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Loetanantawong B; Suracheep C; Somasundrum M; Surareungchai W Anal Chem; 2004 Apr; 76(8):2266-72. PubMed ID: 15080737 [TBL] [Abstract][Full Text] [Related]
6. Dipolar ruthenium(II) ammine complexes as electron transfer mediators of amperometric glucose sensors. Nakabayashi Y; Hirosaki Y; Yamauchi O Bioelectrochemistry; 2006 Oct; 69(2):216-22. PubMed ID: 16678500 [TBL] [Abstract][Full Text] [Related]
7. Tuning of redox properties for the design of ruthenium anticancer drugs: part 2. Syntheses, crystal structures, and electrochemistry of potentially antitumor [Ru III/II Cl6-n(Azole)n]z(n = 3, 4, 6) complexes. Reisner E; Arion VB; Eichinger A; Kandler N; Giester G; Pombeiro AJ; Keppler BK Inorg Chem; 2005 Sep; 44(19):6704-16. PubMed ID: 16156629 [TBL] [Abstract][Full Text] [Related]
8. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Ye JS; Cui HF; Liu X; Lim TM; Zhang WD; Sheu FS Small; 2005 May; 1(5):560-5. PubMed ID: 17193486 [TBL] [Abstract][Full Text] [Related]
9. Voltammetric sensor for oxidized DNA using ultrathin films of osmium and ruthenium metallopolymers. Mugweru A; Wang B; Rusling J Anal Chem; 2004 Sep; 76(18):5557-63. PubMed ID: 15362921 [TBL] [Abstract][Full Text] [Related]
10. Comparison of homoleptic and heteroleptic 2,2'-bipyridine and 1,10-phenanthroline ruthenium complexes as chemiluminescence and electrochemiluminescence reagents in aqueous solution. Cooke MM; Doeven EH; Hogan CF; Adcock JL; McDermott GP; Conlan XA; Barnett NW; Pfeffer FM; Francis PS Anal Chim Acta; 2009 Mar; 635(1):94-101. PubMed ID: 19200484 [TBL] [Abstract][Full Text] [Related]
11. [Ru(phen)2(PHEHAT)]2+ and [Ru(phen)2(HATPHE)]2+: two ruthenium(II) complexes with the same ligands but different photophysics and spectroelectrochemistry. Boisdenghien A; Moucheron C; Kirsch-De Mesmaeker A Inorg Chem; 2005 Oct; 44(21):7678-85. PubMed ID: 16212395 [TBL] [Abstract][Full Text] [Related]
12. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries. Kim Y; Muhammad S; Kim H; Cho YH; Kim H; Kim JM; Yoon WS ChemSusChem; 2015 Jul; 8(14):2378-84. PubMed ID: 26130378 [TBL] [Abstract][Full Text] [Related]
13. Electro-optical gas sensor based on a planar light-emitting electrochemical cell microarray. Xie S; Lu Y; Zhang S; Wang L; Zhang X Small; 2010 Sep; 6(17):1897-9. PubMed ID: 20680936 [No Abstract] [Full Text] [Related]
14. Discharge cavitation during microwave electrochemistry at micrometre-sized electrodes. Rassaei L; Nebel M; Rees NV; Compton RG; Schuhmann W; Marken F Chem Commun (Camb); 2010 Feb; 46(5):812-4. PubMed ID: 20087529 [TBL] [Abstract][Full Text] [Related]
15. The interactions of ruthenium hexaammine with Z-DNA: crystal structure of a Ru(NH3)6+3 salt of d(CGCGCG) at 1.2 A resolution. Ho PS; Frederick CA; Saal D; Wang AH; Rich A J Biomol Struct Dyn; 1987 Feb; 4(4):521-34. PubMed ID: 3271453 [TBL] [Abstract][Full Text] [Related]
16. Using cavity microelectrodes for electrochemical noise studies of oxygen-evolving catalysts. Rincón RA; Battistel A; Ventosa E; Chen X; Nebel M; Schuhmann W ChemSusChem; 2015 Feb; 8(3):560-6. PubMed ID: 25556938 [TBL] [Abstract][Full Text] [Related]
17. In situ transmission electron microscopy study of electrochemical lithiation and delithiation cycling of the conversion anode RuO2. Gregorczyk KE; Liu Y; Sullivan JP; Rubloff GW ACS Nano; 2013 Jul; 7(7):6354-60. PubMed ID: 23782274 [TBL] [Abstract][Full Text] [Related]
18. On the chemical potential of a component in a metastable phase--application to Li-storage in the RuO2-Li system. Delmer O; Maier J Phys Chem Chem Phys; 2009 Aug; 11(30):6424-9. PubMed ID: 19809674 [TBL] [Abstract][Full Text] [Related]
19. Direct imaging of hexaamine-ruthenium(III) in domain boundaries in monolayers of single-stranded DNA. Grubb M; Wackerbarth H; Wengel J; Ulstrup J Langmuir; 2007 Jan; 23(3):1410-3. PubMed ID: 17241066 [TBL] [Abstract][Full Text] [Related]
20. Tetranuclear polybipyridyl complexes of Ru(II) and Mn(II), their electro- and photo-induced transformation into di-mu-oxo Mn(III)Mn(IV) hexanuclear complexes. Romain S; Baffert C; Dumas S; Chauvin J; Leprêtre JC; Daveloose D; Deronzier A; Collomb MN Dalton Trans; 2006 Dec; (48):5691-702. PubMed ID: 17146534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]